Data clustering & the k-means algorithm

Lily Silverstein

April 27, 2016
Why clustering?

Unsupervised Learning

- Underlying structure
 - gain insight into data
 - generate hypotheses
 - detect anomalies
 - identify features
- Natural classification
 - e.g. biological organisms (phylogenetic relationships)
- Data compression
k-means

- popular for more than 50 years
- simple
- efficient
- empirically successful
k-means

Input:

- \(n \) points in \(\mathbb{R}^d \), \(X = \{x_1, \ldots, x_n\} \)
- \(k \), the number of clusters we want to partition \(X \) into
k-means

Input:
- n points in \mathbb{R}^d, $X = \{x_1, \ldots, x_n\}$
- k, the number of clusters we want to partition X into

Output:
- a partition that minimizes the squared error between the mean of each cluster and the points in that cluster.
More precisely, let $X = \{x_1, \ldots, x_n\}$ where $x_j \in \mathbb{R}^d$ for all $1 \leq j \leq n$.

Let $C = \{c_1, \ldots, c_k\}$ be k clusters, each containing some of the x_j’s. Let μ_i be the mean of cluster c_i.

$$\mu_i = \frac{1}{\# c_i} \sum_{x_j \in c_i} x_j.$$
k-means

We define the squared error between μ_i and the points in c_i by

$$E(c_i) = \sum_{x_j \in c_i} \|x_j - \mu_i\|^2.$$
k-means

We define the squared error between μ_i and the points in c_i by

$$E(c_i) = \sum_{x_j \in c_i} \|x_j - \mu_i\|^2.$$

The sum of the squared error over all k clusters is

$$E(C) = \sum_{i=1}^{k} \sum_{x_j \in c_i} \|x_j - \mu_i\|^2.$$
k-means

We define the squared error between μ_i and the points in c_i by

$$E(c_i) = \sum_{x_j \in c_i} \| x_j - \mu_i \|^2.$$

The sum of the squared error over all k clusters is

$$E(C) = \sum_{i=1}^{k} \sum_{x_j \in c_i} \| x_j - \mu_i \|^2.$$

This is the objective function that the algorithm is designed to minimize.
k-means in action

Example of the algorithm for points in \mathbb{R}^2, with $k = 3$.
k-means in action (images taken from [Jain, 2010])

(a) Input data
k-means in action (images taken from [Jain, 2010])

(b) Seed point selection
k-means in action (images taken from [Jain, 2010])
k-means in action (images taken from [Jain, 2010])

(d) Iteration 3
k-means in action (images taken from [Jain, 2010])

(e) Final clustering
basic procedure

1. Select an initial set of k means (for example, choose k points from the dataset).
2. Assign each point to its closest mean to generate a new partition of the data.
3. Calculate the new set of k means with respect to this partition.
4. Repeat Steps 2 and 3 until cluster membership stabilizes.
Will this procedure terminate?
k-means

Will this procedure terminate?
- Monotonely decreasing sequence of sum of squared errors
- Finite number of clusterings for finite point set X
Will this procedure terminate?

- Monotonely decreasing sequence of sum of squared errors
- Finite number of clusterings for finite point set X

Number of steps bounded by $O(n^{O(dk)})$ \textit{Inaba et al. 1994}
k-means

Will this procedure terminate?

- Monotonely decreasing sequence of sum of squared errors
- Finite number of clusterings for finite point set X

Number of steps bounded by $O(n^{O(dk)})$ \textit{Inaba et al. 1994}

k-means is a \textbf{greedy algorithm}. It may terminate in a local minimum.
What’s wrong with this example?
determining k

Sometimes we don’t know what k should be \textit{a priori}.
determining k

Sometimes we don’t know what k should be *a priori*.

Increasing k will always decrease squared error! In fact for $k = n$ (the number of data points) the sum of squared errors is 0. So squared error does not tell us which k to use.
Sometimes we don’t know what \(k \) should be \textit{a priori}.

Increasing \(k \) will always decrease squared error! In fact for \(k = n \) (the number of data points) the sum of squared errors is 0. So squared error does not tell us which \(k \) to use.

Idea: determine \(k \) based on the information we want from the clustering or run \(k \)-means for various \(k \), then use some heuristic to compare the results.
determining k

One heuristic: the *elbow method*.

[Image from http://commons.wikimedia.org/wiki/File:DataClustering ElbowCriterion.JPG]
in Matlab

```matlab
[idx,C] = kmeans(X,k);
```

X is an array whose rows are the points in your dataset.

$$X = \begin{bmatrix}
-x_1 \\
-x_2 \\
\vdots \\
-x_n \\
\end{bmatrix}$$
in Matlab

\[[\text{idx}, C] = \text{kmeans}(X, k); \]

\(k \) is the number of clusters.
in Matlab

\[\text{[idx, C]} = \text{kmeans}(X, k); \]

idx is a vector of length *n* identifying which cluster each point belongs to.

\[\text{idx} = \begin{bmatrix}
\text{cluster that } x_1 \text{ is in} \\
\text{cluster that } x_2 \text{ is in} \\
\vdots \\
\text{cluster that } x_n \text{ is in}
\end{bmatrix} \]
Clustering in Matlab

\[[\text{idx}, C] = \text{kmeans}(X,k); \]

\(C \) is an array containing the \(k \) centroids (means).

\[
C = \begin{bmatrix}
\text{centroid of cluster 1} \\
\text{centroid of cluster 2} \\
\vdots \\
\text{centroid of cluster } k
\end{bmatrix}
\]
References