
Copyright

by

Laura Paul Starkston

2015



The Dissertation Committee for Laura Paul Starkston
certifies that this is the approved version of the following dissertation:

Classifications and Applications of Symplectic Fillings of Seifert

Fibered Spaces over S2

Committee:

Robert E. Gompf, Supervisor

John Etnyre

Cameron Gordon
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Chapter 1

Introduction

Symplectic forms provide additional geometric structure on a smooth manifold, while

maintaining a reasonable level of flexibility to allow for topological cut and paste construc-

tions. In certain cases, pseudoholomorphic curve tools can be used in symplectic manifolds

(with or without boundary) to identify aspects of its topology, based on only a small amount

of information about the submanifolds (e.g. [Eli90a], [Gro85], [McD90], [McD91]). In di-

mension four, we obtain particularly strong results, and the symplectic structure has key

implications about the smooth structure. Therefore, symplectic manifolds make up an im-

portant subclass of all smooth manifolds.

To construct interesting examples of symplectic manifolds, one would like to be able

to use a large range of cut-and-paste operations from the topologist’s tool kit. Fortunately,

many such operations can be performed, though care must be taken to ensure that the

symplectic structures match up nicely along the pasting region. One way to ensure this,

is to require one piece to have convex boundary and the other to have concave boundary

(see section 2.1 for definitions). Then, if the contact manifolds on the two boundaries are

contactomorphic, the pieces can be glued together to form a closed symplectic manifold.

There is a significant amount of work studying when there exists a symplectic 4-

manifold with convex or concave boundary which is a particular contact manifold. It was
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shown [EH02a], [Gay02], [AO02], and [Eli04] that all contact manifolds appear as the con-

cave boundary of many different symplectic manifolds exhibiting a variety of topological

properties. On the other hand, convex fillings are more rare, and in certain cases there are

no symplectic manifolds inducing a given contact manifold convexly on its boundary: first

shown for overtwisted contact structures by Eliashberg and Gromov [Eli90a] and later for

tight examples by Etnyre and Honda [EH02b]. Results were completely established on the

existence of a convex symplectic manifold whose boundary is a relatively simple manifold

like S3, a lens space, or a Seifert fibered space [Gom98], [LL11].

Stronger results on classifications of convex symplectic fillings of a given contact 3-

manifold were only established for contact structures on S3 [Eli90a], a particular canonical

contact structure on lens spaces L(p, q) [Lis08], all contact structures on the lens spaces

L(p, 1) [PVHM10], and links of simple singularities [OO05]. The primary goal of this thesis

is to explore the convex symplectic fillings of Seifert fibered spaces over S2 with a canonical

contact structure. A few additional results on classifications of symplectic fillings appeared

during the preparation of this work (see [KL13], [Kal13], and [GL14]).

One particularly nice property of the canonical contact structures on Seifert fibered

spaces is that they appear as the convex boundary of one standard filling, which is simply

a small neighborhood of transversely intersecting symplectic surfaces (see section 2.2). Any

two convex symplectic fillings of the same contact boundary look the same in a collared

neighborhood of the boundary. Therefore if one of these fillings is found in a closed sym-

plectic manifold, it can be exchanged for the other filling to create a new closed symplectic

manifold. We can easily identify a standard convex filling of the contact manifolds of inter-

est by finding the correct configuration of transversally intersecting symplectic surfaces. For
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each alternate symplectic filling, we can build a potentially new closed symplectic 4-manifold

by exchanging the neighborhood of surfaces with the alternate filling. The Seiberg-Witten

invariants of the original closed manifold can be related to those of the newly constructed

manifold, so properties of the smooth structure can be identified. Such constructions, re-

sulting in exotic copies of CP2#N CP2 for N = 6, 7, 8 were given by Karakurt and the

author in [KS]. These constructions are modeled after the rational blow-down operation

of Fintushel and Stern [FS97], which replaces a neighborhood of symplectic spheres with a

lens space boundary, with an alternate symplectic filling which is a rational homology ball.

This operation was generalized in [Par97] and [SSW08], and its formulation as a symplectic

operation was established by Symington [Sym98], [Sym01].

A key property of Seifert fibered manifolds over S2 with their canonical contact struc-

tures is that they are supported by planar open book decompositions (see section 2.3). This

ensures that every convex symplectic filling is supported by a Lefschetz fibration filling the

given open book decomposition (due to a theorem of Wendl [Wen10], see section 2.4). Each

of these Lefschetz fibrations can be equivalently interpreted as a different factorization of the

monodromy of the open book decomposition into positive Dehn twists. This monodromy

substitution interpretation is often very practical for cut and paste applications of symplectic

fillings.

The main ideas this thesis will present are as follows. Chapter 2 discusses the back-

ground definitions and theorems needed to set up the main problem. Chapter 3 proves the

most general results about classifications of symplectic fillings of Seifert fibered spaces, using

a generalization of the techniques used by Lisca for lens spaces [Lis08]. Chapter 4 gives

explicit complete classifications for large families of examples. Chapter 5 explains certain
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similarities and distinctions between rational blow-down operations and the cut-and-paste

operations resulting from these new examples of symplectic fillings of Seifert fibered spaces.

Chapter 6 explains how to translate the classifications obtained by the techniques of section

3 to monodromy substitutions.
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Chapter 2

Background

2.1 Symplectic fillings

In this section, we will review the basic definitions of symplectic and contact mani-

folds, and discuss various types of symplectic fillings. The type of fillings which this thesis

will focus on are minimal strong symplectic fillings.

Symplectic fillings are a particular case of symplectic manifolds with boundary. The

symplectic structure on a manifold X (possibly with boundary) is a 2-form ω ∈ Ω2(X)

which is non-degenerate (meaning for each p ∈ X and each non-zero V ∈ Tp(X) there exists

W ∈ Tp(X) such that ωp(V,W ) 6= 0) and closed (meaning dω = 0). The standard example is

when X = R2n and ω =
∑

i dxi∧dyi. Symplectic manifolds are necessarily even dimensional,

because of the non-degeneracy condition. The odd dimensional counterparts of symplectic

manifolds are contact manifolds.

A co-orientable contact structure on a 2n+1 dimensional manifold Y is a hyperplane

distribution ξ defined as the kernel of a 1-form α ∈ Ω1(Y ) such that dα is non-degenerate

on the hyperplane field ξ := kerα. Equivalently, α ∧ (dα)n 6= 0. The 1-form α is called the

contact form. The different choices of contact forms for a given contact structure differ by

multiplication by positive functions. In dimension 3, ξ is a 2-dimensional plane field, and the

condition α∧ dα 6= 0 can be understood as a non-integrability condition on the hyperplanes
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ξ: any surface which is tangent to ξ at a single point has tangency of degree one. Therefore

no open subset of a surface has all of its tangent planes given by the contact planes.

For each contact structure, there is a unique Reeb vector field, Rα such that α(R) ≡ 1

and dα(R, ·) ≡ 0. The Reeb vector field depends on the 1-form α instead of on the contact

structure ξ = ker(α), but it exists for any contact form.

One reason contact and symplectic topology are often studied together is because

contact manifolds give rise to symplectic manifolds and can appear as hypersurfaces in

symplectic manifolds. This idea and the relations between symplectic and contact structures

originated with Weinstein in [Wei79]. Further exposition is in [ABK+94] and [Etn98], but

we include the essential definitions and properties here.

Definition 2.1.1. The symplectization of a contact manifold (Y, ξ = ker(α)) is a symplectic

manifold (Y × R, ω = d(etα)).

The form d(etα) = et(dt∧α+ dα) is non-degenerate on Y ×R because the vectors in

ξ pair non-degenerately in the dα piece, and ∂t pairs positively with the Reeb vector field.

It is closed since it is exact. This verifies that the symplectization is indeed a symplectic

manifold. An important property of the symplectization is that it satisfies the following

differential equation

L∂tω = ω

where L denotes the Lie derivative. This follows from Cartan’s formula LV = d ◦ ιV + ιV ◦ d

because

d ◦ ι∂t(d(e
tα)) + ι∂t ◦ d(d(e

tα)) = d ◦ ι∂t(e
t(dt ∧ α + dα)) = d(etα).
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Vector fields V for which LV ω = ω are called Liouville vector fields. These are often

only defined over an open portion of a symplectic manifold, particularly in a neighborhood

of a hypersurface. Note that the symplectic form is expanding as one flows along a Liouville

vector field because ω is positively non-degenerate. In the symplectization we see this: as t

increases, the form d(etα) = et(dt∧α+dα) scales exponentially by the constant et. Liouville

vector fields are useful for identifying contact hypersurfaces in a symplectic manifold as

shown in the following lemma.

Lemma 2.1.2. Let (X,ω) be a 2n dimensional symplectic manifold and Y a hypersurface in

X. Let V be a Liouville vector field defined in a neighborhood of Y and everywhere transverse

to Y . Let i : Y → X be the inclusion map. Then α := i∗ιV ω is a contact form on Y .

Proof. We want to show α ∧ (dα)n−1 6= 0.

Since V is a Liouville vector field LV ω = ω so (d ◦ ιV + ιV ◦ d)ω = ω. Since ω is

closed, this implies d(ιV ω) = ω. Therefore dα = i∗ω.

Since ω is non-degenerate and Y has co-dimension one, dα = i∗ω has one dimensional

kernel, generated by a vector field R. First we will show ω(V,R) 6= 0. By definition of R,

ω(U,R) = 0 for every vector field U in TY . Since V is everywhere transverse to Y , every

vector field on i∗TX can be written as cV +U for some U ∈ TY . If we had ω(V,R) = 0 at any

point, ω would fail to be non-degenerate. Because ω(V,R) 6= 0, R is not in kerα = ker(i∗ιV ω)

so it is transverse to ξ := kerα.

Next we show, dα is non-degenerate on ξ. A basis for ξ, together with R and V make

up a frame for TX . By the non-degeneracy of ω we know that for every p ∈ Y and Up ∈ ξp,
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there exist scalars c, d and a vector U ′
p ∈ ξp such that ωp(Up, U

′
p + cVp + dRp) 6= 0. However,

ωp(Up, Vp) = −ιV ωp(Up) = αp(Up) = 0

since ξ = kerα. Furthermore

ωp(Up, Rp) = i∗ωp(Up, Rp) = dαp(Up, Rp) = 0

since R ∈ ker(dα). Therefore

dαp(Up, U
′

p) = ωp(Up, U
′

p) 6= 0.

Such a hypersurface Y is called a submanifold of contact type. The contact structure

ξ = ker(α) is called the induced contact structure on Y . Assuming everything is orientable,

any two Liouville vector fields V and V ′ transverse to Y induce isotopic contact structures.

Lemma 2.1.3. Suppose V and V ′ are Liouville vector fields which are both positively trans-

verse to an oriented hypersurface Y . Let ξ = ker(i∗ιV ω) and ξ′ = ker(i∗ιV ′ω). Then ξ and

ξ′ are isotopic through contact structures.

Note that by Gray’s theorem, if there is a 1-parameter family of contact structures

ξt, 0 ≤ t ≤ 1 on a compact manifold M then the isotopy can be realized ambiently: namely

there is a family of diffeomorphisms φt : M → M such that φ∗
t (ξt) = ξ0. Therefore this

isotopy of contact structures is in fact equivalent to an ambient isotopy of contact manifolds.

Proof. The vector field Vt = (1− t)V + tV ′ is transverse to Y for all 0 ≤ t ≤ 1. Vt is Liouville

since LVt
ω = L(1−t)V +tV ′ω = (1− t)LV ω+ tLV ′ω = (1− t)ω+ tω = ω. Therefore αt = i∗ιVt

ω

is a contact form for all 0 ≤ t ≤ 1 interpolating between contact forms for ξ and ξ′.
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In fact, a neighborhood of a compact contact hypersurface is completely determined

by the contact structure. The existence of the Liouville vector field allows us to identify this

neighborhood with a neighborhood of the 0-section of the symplectization.

Lemma 2.1.4. Suppose Y is a compact contact hypersurface in a symplectic manifold (X,ω)

with a transverse Liouville vector field V inducing the contact form α = i∗ιV ω. Then there

is a neighborhood of Y which is symplectomorphic to a neighborhood of Y × {0} in the

symplectization of (Y, ξ = ker(α)), and the symplectomorphism restricts to the identity on

Y .

The idea is to match up the flow of the Liouville vector field with the R direction in the

symplectization, and then isotope the symplectic structure along the contact hypersurface so

that it matches that in the symplectization by lining up the Reeb vector fields in each. See

[Etn98] for more details. Then the result follows from the following fundamental theorem in

symplectic topology.

Theorem 2.1.5 (Moser-Weinstein). Let N ⊂ M be a smooth compact submanifold. Let ω0

and ω1 be symplectic forms on M which agree on TM |N . Then there exists a diffeomorphism

f : M → M isotopic to the identity and fixing N pointwise such that f ∗ω1 = ω0 in a

neighborhood of N .

When Y is the boundary of a symplectic manifold (X,ω), it can similarly appear as a

hypersurface of contact type, but now it has a collared neighborhood which can be identified

with a neighborhood of the 0-section in the half of the symplectization where t ≥ 0 or t ≤ 0.

To determine which half, we need to consider the distinguished orientation Y inherits as
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the boundary of X and comparing the outward normal to the direction of the transverse

Liouville vector field. When the boundary looks like the the boundary of the half where

t ≤ 0 (the Liouville vector field points outward), we say the boundary is convex. When

instead it looks like the boundary of the half of the symplectization where t ≥ 0, we say the

boundary is concave.

Definition 2.1.6. A symplectic manifold (W,ω) with boundary ∂ W is a strong symplectic

filling or convex symplectic filling of (∂ W, ξ) if there is a Liouville vector field V defined in

a neighborhood of ∂ W which is everywhere transverse to ∂ W and points outward such that

ξ = ker(i∗ιV ω). In this case we say (W,ω) has convex boundary.

Definition 2.1.7. A symplectic manifold (W ′, ω′) with boundary ∂ W ′ has concave boundary

if there is a Liouville vector field defined in a neighborhood of ∂ W ′ which is everywhere

transverse to ∂ W ′ and points inward along the boundary. Such manifolds with concave

boundary are often called concave caps.

The key property of symplectic manifolds with convex and concave boundary is that

they can be glued together.

Theorem 2.1.8. Suppose (Mi, ωi) for i = 1, 2 are symplectic manifolds with compact bound-

ary Ni, such that N1 is convex and N2 is concave. Let ξi denote the induced contact struc-

tures. If there is a contactomorphism f : (N1, ξ1) → (N2, ξ2) f
∗ξ2 = ξ1, then M1 ∪f M2

admits a symplectic structure.

Moreover, sufficiently far away from the gluing area, the symplectic forms on the glued

manifold agree with the original ωi up to possible rescaling by a constant. The complete
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proof of this theorem is in [Etn98], though the result was understood earlier by experts

working on more specific gluings. The idea is to match up collared neighborhoods of the

boundary inside the symplectizations. The only hitch is that the product structure on the

symplectization and the position of the 0-section depends on the contact form α defined

by the symplectic form and Liouville vector field, not just the contact structure ξ. The

contactomorphism identifies the contact structures so the contact forms on the two pieces

are related by a positive scalar function. We can identify a neighborhood ofN1 inM1 with the

lower half of a neighborhood of the 0-section of its symplectization as defined by its contact

form α1. We can then compare α1 to the corresponding contact form α2 on the other piece,

and after possibly rescaling all ofM2, we can assume α2 = gα1 with g > 1. Then the collared

neighborhood of (N2, α2) can be identified as a subset of {(t, y) ∈ R×Y : t ≥ log(g(y))} in

the symplectization defined by α1. This places the concave piece strictly above the convex

piece so they can be glued together along with the intermediate space in the symplectization:

{(t, y) ∈ R×Y : 0 ≤ t ≤ log(g(y))}.

While symplectic manifolds with convex boundary appear to be defined in a symmet-

ric way to those with concave boundary, the reality is that manifolds with concave boundaries

appear more often than convex boundaries. For example, every contact 3-manifold arises

as the concave boundary of some symplectic 4-manifold, but not every contact 3-manifold

has a convex symplectic filling. Moreover, the concave caps of a given contact 3-manifold

often have significantly fewer topological restrictions than the convex fillings do. This makes

classifying convex fillings both more manageable and more interesting than classifying con-

cave caps. Moreover, convex fillings are related to other notions of fillings from complex and

symplectic geometry as discussed in the following subsection.

11



2.1.1 Stronger and weaker versions of symplectic fillings

Notice that wherever a Liouville vector field is defined, the symplectic form is neces-

sarily exact since ω = LV ω = d(ιV ω). A symplectic filling where the Liouville vector field

extends over the entire manifold (W,ω) is called an exact filling. Obviously an exact filling

is a strong symplectic filling, but the converse is not always true [Ghi05]. A stronger notion

of filling is related to a type of complex manifold.

Definition 2.1.9. A Stein manifold is a properly embedded complex submanifold of some

(CN , i).

The relationship between Stein and symplectic manifolds is not immediately obvious.

To see this, consider the radial function squared φ0(z) = |z|2 on CN . It yields a symplectic

form ω = −ddCφ0 where dCφ0(V ) = dφ(iV ). Any function φ such that −ddCφ is symplectic

where dCφ = dφ ◦ J , is called strictly plurisubharmonic or J-convex. Grauert [Gra58] found

that an equivalent definition for a Stein manifold is a complex manifold (X, J) which admits

an exhausting (proper and bounded below) J-convex function.

Definition 2.1.10. Let (Y, ξ) be a contact manifold. A Stein filling of (Y, ξ) is a com-

pact manifold W with boundary Y , such that there exists a Stein manifold (X, J) with an

exhausting J-convex function φ such that W = φ−1((−∞, C]) for some constant C, and

ξ = T (∂ W ) ∩ J(T (∂ W )).

The natural symplectic form on a Stein filling is given by ωφ = −ddCφ which is

clearly exact and the gradient vector field for φ is Liouville and transverse to the boundary.

Examples of exactly fillable contact manifolds which are not Stein fillable were discovered

by Bowden [Bow12].
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A weaker notion of symplectic fillings is simple to define when (W,ω) is a symplectic

4-manifold and (∂ W, ξ) is a contact 3-manifold. In this case we have the following definition.

Definition 2.1.11. (W 4, ω) is a weak symplectic filling of (∂ W 3, ξ) if ω is a positive area

form on the contact planes ξ.

Strong symplectic fillings are weak symplectic fillings because for a strong filling, ω

restricts to the contact planes as dα which is non-degenerate on ξ. Examples of weak fillings

that are not strong symplectic fillings were first given by Eliashberg in [Eli96]. Generaliza-

tions of this notion to higher dimensions are discussed in [MNW13].

Remark 2.1.12. For the contact manifolds discussed in this thesis, the notions of weak, strong,

exact, and Stein fillings will in fact all coincide (see section 2.4). The term symplectic filling

will generally refer to a convex (strong) symplectic filling for the remainder of this thesis.

2.2 Seifert fibered spaces

The focus of this study will be on symplectic 4-manifolds with boundary given by a

Seifert fibered 3-manifold. These manifolds have nice decompositions and are slight general-

izations of circle bundles over surfaces. This section will review some equivalent definitions

of Seifert fibered spaces from a topological perspective and discuss how they arise as the

boundaries of certain plumbed 4-manifolds.

First, we give a constructive definition.

Definition 2.2.1. A Seifert fibered space over Σ (where Σ is a surface) is a 3-manifold

obtained from a S1 bundle over Σ by performing Dehn surgery on finitely many S1 fibers,
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such that none of the Dehn surgeries sends the meridian of the solid torus to the isotopy

class of a fiber.

Performing Dehn surgery on a fiber means we cut out a neighborhood of that fiber,

which is a solid torus, and reglue the solid torus by a diffeomorphism of the boundary torus.

The diffeomorphism type of a manifold resulting from Dehn surgery on a given embedded

circle is determined by the homology class the meridian of the solid torus is sent to under the

gluing diffeomorphism. A topologically equivalent operation to performing the Dehn surgery

is the following. Cut out a neighborhood of the embedded circle fiber and keep track of the

rulings on the boundary torus by meridians µ, which bounded disks in the neighborhood we

cut out, and longitudes λ specified by the direction of the nearby fibers (in general there

is a choice of longitude, and this is a natural choice in this case). Choose a rational slope

on the torus which represents the homology class the meridian would be sent to under the

gluing map. Instead of gluing the solid torus back in via the gluing map, it is topologically

equivalent to collapse each of the curves of the chosen rational slope down to a point. The

image of the torus under this quotient corresponds under this equivalence to the core of the

solid torus (the centers of the meridional disks). From this alternate perspective one can

see that the following more abstract definition of a Seifert fibered space is equivalent to the

constructive one.

Definition 2.2.2. A Seifert fibered space over Σ is a 3-manifold Y together with a map

π : Y → Σ such that for every p ∈ Σ there is a neighborhood U of p in Σ such that

π|π−1(U) : π
−1(U) → U is diffeomorphic to an α/β solid torus fibration for some α/β ∈ Q.

An α/β solid torus fibration p : S1 ×D2 → D2 is a map from the solid torus to the

disk, such that the preimage of the center of the disk is the core of the solid torus, and the
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preimage of any point with radial coordinate r > 0 in D2 is a curve of slope αµ+ βλ on the

torus S1 × S1
r .

Note that the 0 solid torus fibration is the trivial product fibration. The fibers which

have an α/β 6= 0 solid torus fibration are called the singular fibers. There are finitely many

such fibers.

Now we will show how to draw surgery diagrams for Seifert fibered spaces. Then we

will expand these rational surgery diagrams to integral surgery diagrams for the 3-manifolds,

which display them as the boundaries of handlebody descriptions of 4-manifolds. See section

5.3 of [GS99] for excellent exposition on surgery and Kirby diagrams and the relations be-

tween them. The rational surgery diagrams can be built directly from definition 2.2.1. Start

with the surgery diagram for a circle bundle over a surface as in figure 2.1. Note that by

replacing the g pairs of 0-framed unknotted components by dotted circles, this becomes a

handlebody diagram for a disk bundle filling the circle bundle. See [GS99] example 4.6.5 and

section 6.1 for details. Next to obtain the Seifert fibered space, we want to do Dehn surgery

on finitely many S1 fibers. These fibers can be represented by curves which link once with

the large e-framed component as in figure 2.2.

To change the rational surgery diagram of figure 2.2 into an integral surgery diagram,

we can change each rationally framed component to an integrally framed component if we

attach a chain of unknots with integral framings specified by a continued fraction expansion.

If

qi = z1i −
1

z2i −
1

...− 1

zn
i

(2.2.1)
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e

g

0000

Figure 2.1: Surgery diagram for an S1-bundle over a genus g surface of Euler number e.

e
q1

q2 qk

g

0000

Figure 2.2: Surgery diagram for a Seifert fibered space over a genus g surface. q1, · · · , qk ∈ Q.
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z11

z21

zn1

1

z1k

z2k

znk

k

Figure 2.3: Kirby diagram for a plumbing whose boundary is a Seifert fibered space over a
genus g surface, where all framings are integers.

then we can replace the qi framed unknot with a chain of unknots with framings z1i , · · · , z
n
i ∈

Z as in figure 2.3. The integral surgery diagram turns into the rational surgery diagram after

a sequence of slam-dunks (see [GS99] section 5.3).

By replacing the g pairs of 0-framed circles by dotted circles representing 1-handles,

the diagram of figure 2.3 represents a handlebody decomposition of a 4-manifold, which is a

plumbing of disk bundles. Plumbings and their Kirby diagrams are explained in great detail

in [GS99] sections 4.6.2 and 6.1, but we review the basics we will use here.

Given two disk bundles over surfaces, take a small disk in each surface and consider

the trivial bundles over those disks. We can plumb the two bundles together by identifying

these two trivial bundles over the two subdisks in a way that identifies the fibers of one

bundle with the sections of the other and vice versa. The plumbing data is encoded in a

marked graph where each vertex represents a disk bundle marked by its genus and Euler

number (or just the Euler number if the genus is 0) and each edge corresponds to a plumbing

between the bundles corresponding to the adjacent vertices as in figure 2.4.
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1,-25-4

2,-3

-2

-2

Figure 2.4: Plumbing graph and corresponding Kirby diagram

Disk bundles over spheres have simple handlebody decompositions given by a 0-

handle and a 2-handle attached along an unknotted circle where the framing on the 2-handle

determines the Euler number of the bundle. Disk bundles over higher genus g surfaces are

similar but require 2g 1-handles. To get a handlebody for a plumbing of two such disk

bundles, attach the 2-handles corresponding to each bundle along the same 0-handle such

that the attaching circles link in a Hopf link. When the plumbing graph is a tree it does not

matter whether the linking is done positively or negatively, but in general the edges of the

graph can be labeled with a +/− sign to specify this data.

The plumbings we will consider have graphs which are star-shaped trees, meaning

there is one vertex (the central vertex ) which can have valence > 2, from which linear arms

emanate. When the genera for all bundles except possibly the one corresponding to the

central vertex are 0, the boundary of such a plumbing is a Seifert fibered space as indicated

in figure 2.3. We will focus on Seifert fibered spaces over S2, so these bound star-shaped

plumbings of disk bundles over spheres.
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Figure 2.5: Rolfsen twist. p, q, n, k ∈ Z.

The labeling on the rational surgery diagram depicted in figure 2.2 is not unique

for a given Seifert fibered 3-manifold, and thus the corresponding plumbing which bounds

the Seifert fibered manifold is not unique either. The ambiguity lies in the fact that we can

perform Rolfsen twists to the surgery diagram in figure 2.2 along the components contributing

the singular fibers. The Rolfsen twist is shown in figure 2.5. However, there is always a way

to perform Rolfsen twists so that the rational surgery coefficients are strictly less than −1,

and this provides a unique normalized surgery diagram. The values of e, q1 =
α1

β1
, · · · , qk =

αk

βk

in this normalized form provide the Seifert invariants of the space. The value of e in the

normalized diagram is often referred to as e0 and α1, · · · , αk are called the multiplicities of the

singular fibers. Each of the rational numbers q1, · · · , qk < −1 has a unique continued fraction

expansion as in equation 2.2.1 made up of integers that are all at most −2. The plumbing

whose Kirby diagram is given by expanding the surgery diagram with these continued fraction

expansions will be the standard plumbing filling the Seifert fibered space.
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2.3 Open books and Lefschetz fibrations

We would like a more topological way to interpret symplectic fillings of contact man-

ifolds. This is possible for Stein fillings through Lefschetz fibrations.

Definition 2.3.1. A Lefschetz fibration on a compact, oriented 4-manifold X (possibly with

boundary and co-dimension two corners) is a surjective smooth map to a compact, oriented

surface (possibly with boundary) f : X → S which is a fiber bundle except around finitely

many critical points on the interior. Near these critical points there must be local complex

coordinates (z1, z2) which orient X such that f is given by (z1, z2) 7→ z21+z
2
2 (the critical point

occurs at (0, 0)). The co-dimension two corners are formed by the union of the boundary

components of the regular fibers in f−1(∂ S), and can be smoothed.

In regular fibers above a small neighborhood of a critical value of a Lefschetz fibration,

there is an isotopy class of simple closed curves which collapse to a point in the singular

fiber. Such simple closed curves are called the vanishing cycles of the Lefschetz fibration.

The topology of the 4-manifold is determined by the topology of the fibers, the critical values

and their corresponding vanishing cycles.

We will only consider Lefschetz fibrations where the base surface is a disk D2, and

each regular fiber F is a surface with boundary. All such Lefschetz fibrations can be built

from 0, 1, and 2-handles, where the 0 and 1 handles are used to build F × D2 and the 2-

handles are attached along unknotted components, each lying in a fiber, and attached with

framing −1 relative to the fiber.

Eliashberg proved that Stein fillings are characterized by having handlebody de-

compositions with certain properties [Eli90b] (expanded upon in dimension 4 by Gompf
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[Gom98]). The handlebody decompositions for Lefschetz fibrations with boundary, which

were mentioned above, have these properties as long as they are allowable (meaning all of the

vanishing cycles are homologically essential curves in the fibers) and thus those manifolds

support a Stein structure. It was shown in [LP01] and [AO02] that the converse holds: every

Stein manifold admits the structure of an allowable Lefschetz fibration.

Now consider the restriction of the Lefschetz fibration structure to the boundary

and corners of the manifold Y = ∂ X . The boundary is made up of two pieces. The first

piece comes from looking at the fibers above the boundary circle of the base disk. This is

a fibration over the circle whose fibers are the same as the regular fibers of the Lefschetz

fibration. The second piece comes from the union of the boundary components of all the

fibers. For each boundary S1 component of F this piece adds in a solid torus S1 ×D2. The

intersection of these two pieces are tori coming from the corners of X . These corners can be

smoothed via a standard corner model. The smoothing blurs the precise division between

the two pieces, but the decomposition is well defined up to isotopy of the tori. We conclude

that the complement of a disjoint union of solid tori in Y is a surface bundle over S1, and

the meridians of the solid tori are glued to sections of the fibration on its boundary. This is

precisely the structure of an open book decomposition.

Definition 2.3.2. An open book decomposition of a 3-manifold Y is a link B ⊂ Y and a

fibration π : Y \B → S1 whose fibers are Seifert surfaces for B. A fiber Σ = π−1(p) is called

the page and the link B is called the binding.

The open book decomposition can be recovered from the page Σ and the monodromy

φ of the fibration, since solid torus neighborhoods of the binding components are glued to
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the fibration by a standard specified framing. The data (Σ, φ) is referred to as an abstract

open book.

A standard example of an open book decomposition on S3 has binding given by the

Hopf link, and pages given by the S1 family of annuli whose boundaries are all the chosen

Hopf link. Each page is a union of the fibers of the Hopf fibration to S2 above an interval

in the base connecting the north and south poles of S2, and these intervals come in an S1

family.

Thurston and Winkelnkemper [TW75] showed that any open book decomposition

gives rise to a contact structure, by taking planes which are almost tangent to the interior

of the pages, and are positively transverse to the binding components (where the binding is

oriented as the boundary of a page). We say that the open book decomposition supports the

contact structure when it arises this way.

The open book decomposition on S3 discussed above whose binding is the positive

Hopf link (orienting the components as the boundary of the page to determine the sign of

the linking), supports the standard tight contact structure on S3, and the negative Hopf link

open book supports an overtwisted contact structure on S3.

Given two 3-manifolds with open book decompositions, their connected sum has an

open book decomposition whose binding is a Murasugi sum of the bindings of the original

open books, and whose pages are obtained by plumbing together the original pages as in

figure 2.6. By taking the open book decomposition on S3 mentioned above and connect

summing in this way with any other open book on a 3-manifold Y , we get a new open

book decomposition for Y#S3 ∼= Y called the positive/negative stabilization where we have
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Figure 2.6: The page of a connect sum of open books.

attached a band to the pages of the open book on Y and performed a band sum on the

binding. The contact manifold supported by the connected sum open book is equivalent to

the connected sum of the originally supported contact manifolds. Because the positive Hopf

open book on S3 supports the standard tight contact structure, connect summing (Y, ξ) with

(S3, ξstd) yields (Y, ξ), so positive stabilization does not change which contact structure the

open book supports.

Giroux [Gir02] proved the converse of Thurston-Winkelnkemper’s theorem, and es-

tablished that contact structures on 3-manifolds up to contact isotopy are in one to one

correspondence with open book decompositions up to positive stabilization.

We know from above that an allowable Lefschetz fibration admits a Stein structure.

It is natural that the open book decomposition on the boundary of the Lefschetz fibration

induces the same contact structure as the Stein structure. The details of this were verified

in [Pla04].
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A Lefschetz fibration determines the open book decomposition on its boundary, and

it is useful to be able to describe that open book in terms of the fibers and vanishing cycles.

The fibers of the Lefschetz fibration agree with the fibers of the open book decomposition,

so it suffices to describe the monodromy of the open book. It can be shown that a Lefschetz

fibration with a single vanishing cycle has a boundary open book whose monodromy is a

single positive (right-handed) Dehn twist about the vanishing cycle. With multiple vanishing

cycles, the boundary open book has monodromy given by a product of positive Dehn twists,

one about each vanishing cycle. The conventions to keep track of the ordering of the Dehn

twists in the cases relevant here are described below.

2.3.1 Conventions on monodromy factorizations and Lefschetz fibrations

A Lefschetz fibration naturally induces an open book decomposition on the boundary

where the fibers of the open book are the same as the fibers of the Lefschetz fibration, and the

monodromy is given by a product of positive (right-handed) Dehn twists about the vanishing

cycles. Since mapping class groups of surfaces are non-abelian, the order of the vanishing

cycles generally matters. For this reason, we will briefly mention the conventions that we

will use throughout this thesis.

Suppose c1, · · · , cn are simple closed curves on the fiber. Denote by Dci a positive

Dehn twist around ci. The product Dc1Dc2 · · ·Dcn means first Dehn twist along c1, then c2,

and so on until finally along cn. We will be particularly interested in the case where the

fibers of the Lefschetz fibration and open book decomposition are planar (genus zero). In

this case the fiber is a disk with holes, and we can place the holes along a circle concentric

with the bounday of the disk. Labelling the holes {1, · · · , m} counterclockwise, we use the
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notation Di1,··· ,ik for i1, · · · , ik ∈ {1, · · · , m} to indicate a positive Dehn twist about a curve

which convexly contains the holes i1, · · · , ik.

Any factorization of the monodromy of an open book decomposition into a product

of positive Dehn twists corresponds to a Lefschetz fibration. When the fibers are disks with

holes, we have the natural handlebody decomposition for this Lefschetz fibration where the

holes are represented by dotted circles forming a trivial braid corresponding to 1-handles and

the vanishing cycles correspond to 2-handles. We view the holed-disk fibers as orthogonal

to the dotted circles, oriented so that the outward normal points downward. Then the mon-

odromy factorization Dc1 · · ·Dcn corresponds to the Lefschetz fibration where the vanishing

cycle c1 appears at the top and cn at the bottom (though these vanishing cycles lie on the

upside-down disk). Flipping the entire diagram 180◦ around the horizontal axis in the page

gives a handlebody decomposition where the vanishing cycle c1 appears at the bottom and cn

appears at the top, but now these vanishing cycles are viewed as living on the disk without

turning it upside-down. This is an alternate convention which has appeared in some of the

literature. However, here we will use the convention where the disk fibers are oriented with

a downward normal, and the vanishing cycles are ordered top to bottom.

Typically, to draw the handlebody, we will isotope the holes on the disk so that they

all lie on the bottom half of the disk along a circle concentric to the boundary. An example,

using the top to bottom convention where the outward normal to the disk points downward,

is in figure 2.7.

In this case, a generating set of relations for the mapping class group can be easily

described. The generators are given by Dehn twists about curves in the surface. Relations

between these generators have three types. The first is that Dehn twists about disjoint
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Figure 2.7: The Lefschetz fibration corresponding to the monodromy factorization
D1,3D2,5D4,7 = Dc1Dc2Dc3.

curves commute with each other. The second is the conjugacy relation: if φ = Dc then

D−1
c Dc′Dc = Dφ(c′). The third is the lantern relation. To describe this relation on the

disk with n holes, choose a standard model so the holes are placed on the vertices of a

regular n-gon inside the disk. The lantern relations say that if A,B, and C are disjoint

collections of holes so that the holes in A precede those of B which precede those of C going

counterclockwise around the disk, then

DADBDCDA∪B∪C = DA∪BDA∪CDB∪C . (2.3.1)

By applying the lantern relation iteratively, one can obtain the following daisy relations. If

B0, B1, · · · , Bm are subset of holes ordered counterclockwise around the disk, then

Dm−1
B0

DB1
· · ·DBm

DB0∪B1∪···∪Bm
= DB0∪B1

DB0∪B2
· · ·DB0∪Bm

DB1∪···∪Bm
. (2.3.2)

Finally, by iteratively applying daisy relations, we find the following generalized lantern
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relation. Here B1, · · · , Bm are subsets of holes ordered counterclockwise around the disk.

Dm−2
B1

· · ·Dm−2
Bm

DB1∪···∪Bm
= (DB1∪B2

DB1∪B3
· · ·DB1∪Bm

)(DB2∪B3
· · ·DB2∪Bm

) · · · (DBm−1∪Bm
)

(2.3.3)

2.4 Open books on Seifert fibered spaces

Now we bring the previous three background sections together to discuss the main

objects of study in this thesis: the canonical contact structures on Seifert fibered spaces over

S2 and their symplectic fillings. Recall from section 2.2 that such Seifert fibered spaces arise

as the boundary of a plumbing of disk bundles over spheres according to a star-shaped graph,

and under the normalization the Euler numbers on the non-central disk bundles are at most

−2. The Euler number on the central disk bundle, e0 is an invariant of the Seifert fibered

space and can be any integer. These normalized plumbings are in one to one correspondence

with Seifert fibered spaces. When e0 ≤ −k, Gay and Mark [GM13] showed that the plumbing

supports a Lefschetz fibration which can be described explicitly in terms of the plumbing

graph. The induced open book decomposition supports a contact structure on the boundary

Seifert fibered space. Park and Stipsicz [PS14] showed this contact structure agrees with

the canonical contact structure which was originally defined as the one given by the field of

complex tangencies when realizing the Seifert fibered space as the link of an isolated normal

surface singularity.

In fact Gay and Mark’s construction is for a large class of plumbings of disk bundles

over surfaces of any genus. Their set-up starts with a configuration of core symplectic surfaces

C = C1∪· · ·∪Cn intersecting ω-orthogonally according to a negative definite plumbing graph

Γ with no edges from a vertex to itself. A regular neighborhood of the union of these surfaces
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is the plumbing. For each vertex vj , let sj be the sum of the valence of that vertex with

the self-intersection number of the corresponding symplectic surface. Assume sj ≤ 0 for all

vertices vj (a.k.a. no bad vertices). Let Σ be the surface obtained from connect summing

|sj| copies of D
2 to each Cj and then connect summing these surfaces together according to

the graph. Let {c1, · · · , ck} be simple closed curves, with one around each connected sum

neck, and τ the product of right handed Dehn twists around c1, · · · , ck.

Theorem 2.4.1 (Gay and Mark [GM13] Theorem 1.1). Any neighborhood of C contains

a neighborhood (Z, η) of C with strongly convex boundary, that admits a Lefschetz fibration

π : Z → D2 having regular fiber Σ and exactly one singular fiber Σ0 = π−1(0). The vanishing

cycles are c1, · · · , ck and C is the union of the closed components of Σ0. The induced contact

structure ξ on ∂ Z is supported by the induced open book (Σ, τ).

Connect summing each surface with |sj| disks amounts to cutting |sj | holes in the

surface. There is a vanishing cycle around each connected sum neck. Because all of these

vanishing cycles lie disjointly in the surface describing the fiber of the Lefschetz fibration, we

can deform the fibration so that all the critical points lie in a single fiber. Then, this critical

fiber is made up of a union of the surfaces at the cores of the plumbings which intersect at a

single point for each edge in the plumbing graph, along with some trivial disks that retract

onto the surfaces. The number of Lefschetz critical points on each surface is designed to be

the negation of its prescribed self-intersection number, because each Lefschetz critical point

contributes −1 to this number.

In the case of the standard plumbings which fill Seifert fibered spaces over S2, all

the self-intersection numbers of the core spheres except possibly the central vertex are at
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most −2 and their valencies are at most 2, so the only condition needed on these spaces

for Gay and Mark’s construction to go through is e0 ≤ −k. Furthermore all of the surfaces

Ci are spheres, and connect summing a disk to a surface is equivalent to cutting a hole in

the surface. Since the plumbing graphs are star-shaped, the final surface Σ will be a planar

genus 0 surface with
∑

i |si| boundary components.

In fact, Gay and Stipsicz showed earlier that any negative definite plumbing supports

a convex symplectic structure in [GS09]. This implies that a slightly larger range of Seifert

fibered spaces appears as the boundary of a strong symplectic filling, however it is not

clear how to construct an open book supporting these contact structures. In practice, it

is very useful to recognize a contact structure via a supporting open book decomposition.

Furthermore, even if we found open book decompositions for these more general contact

structures, it is likely they would no longer be planar.

Planar contact structures are particularly rigid, and the symplectic fillings of such

contact manifolds satisfy very convenient properties as shown by Wendl.

Theorem 2.4.2 (Wendl [Wen10]). Suppose (W,ω) is a strong symplectic filling of a planar

contact manifold (M, ξ) with a given planar open book. Then (W,ω) is symplectically defor-

mation equivalent to a Stein filling supported by a Lefschetz fibration which restricts to the

given open book decomposition on its boundary. The Lefschetz fibration is allowable and thus

supports a Stein structure if W is minimal.

This was extended to weak symplectic fillings of planar contact structures in [NW11],

thus in the planar case there is no distinction between weak, strong, and Stein fillings.
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Chapter 3

Classification Methods

In this section we develop the main theory needed for classifying symplectic fillings

of Seifert fibered spaces. Because of the methods used in the proof, we restrict to Seifert

fibered spaces over S2 which have Seifert invariant e0 ≤ −k−1 where e0 and k are identified

in figure 3.1. We will refer to such Seifert fibered spaces as dually positive, for reasons that

will become clear shortly. Note that these plumbings satisfy the condition needed for Gay

and Mark’s theorem 2.4.1, so these Seifert fibered spaces have a canonical contact structure

supported by a planar open book, and the plumbing gives a filling of this contact manifold.

The main argument here gives upper bounds (in terms of explicit diffeomorphism

types) of strong symplectic fillings of dually positive Seifert fibered spaces with the canonical

contact structure induced on the boundary of the plumbing ξpl. First, using a construction

utilized by Stipsicz, Szabó and Wahl [SSW08], we will build the symplectic plumbing of

spheres inside a closed symplectic manifold, such that the complement is also a symplectic

plumbing of spheres, now with concave boundary. The dually positive condition will allow

us to ensure that the concave piece contains a sphere of self-intersection number +1. Then

we replace the convex plumbing of spheres by an arbitrary convex symplectic filling to

form a closed symplectic manifold with the concave cap which still contains a sphere of

self-intersection number +1 (analogous to Lisca’s method to classify symplectic fillings of
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e0

b1k

bnk

k

Figure 3.1: Surgery diagram for a Seifert fibered space with k singular fibers, bji ≤ −2.
Equivalently a Kirby diagram for a plumbing bounding the Seifert fibered space.

(L(p, q), ξstd)). A theorem of McDuff implies that this closed manifold is a symplectic blow-up

of CP2 with its standard Kahler structure. To identify the topology of the unknown convex

symplectic filling, it suffices to understand how the concave cap can symplectically embed into

the blow-up of CP2, since the convex filling must be its complement. Generalizing arguments

of Lisca [Lis08], we obtain homological restrictions coming from the adjunction formula and

intersection information of the spheres. Under certain conditions, we can show that the

homology classes these spheres represent uniquely determines a symplectic embedding of

their neighborhood into a blow up of CP2. By deleting the possible embeddings of the

concave cap from blow-ups of CP2, we obtain the diffeomorphism types of all possible convex

symplectic fillings of the given dually positive Seifert fibered space with contact structure

ξpl.
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d 3-handles, 1 4-handle

0 0 0

−n

n

d

Figure 3.2: A handlebody diagram for the sphere bundle Bn. The relevant spheres (the zero
section, infinity section, and d fibers) are represented by the cores of the 2-handles together
with the pushed in Seifert surfaces for the attaching circles.

3.1 The dual graph construction

First we describe the dual graph construction of Stipsicz, Szabó, and Wahl [SSW08],

which provides a symplectic embedding of the neighborhood of dually positive spheres into

a blow-up of CP2 whose complement is the concave cap we need.

The construction of the dual graph begins by looking at a complex ruled surface

over CP1. Topologically, this is an S2 bundle over S2. Each fiber will have self intersection

number 0, and will intersect each section of the bundle in a single point. The zero and

infinity sections have self-intersection numbers n and −n respectively. It is convenient to

have a handlebody diagram for the sphere bundle Bn, in which the 0-section, d distinct

fibers, and the ∞-section are all visible. Such a diagram is given by figure 3.2.

To obtain the dual plumbing, we build the original plumbing inside a symplectic

blow-up of Bn. We will allow blowups to be performed along the intersections of the various

spheres in the picture. The proper transforms of these spheres will remain symplectic, and

new exceptional spheres are symplectic submanifolds as well. At the beginning the spheres

we keep track of are just the 0-section, the ∞-section, and the d fibers. As we blow-up, we
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include the new exceptional spheres in the picture. Figure 3.3 shows an example, keeping

track of both the standard short-hand notation to keep track of these blowups, as well as the

corresponding handlebody diagrams. Note that each exceptional fiber will contain at least

one sphere of self-intersection −1, which is the exceptional sphere from the most recent blow-

up of that fiber. We perform the blow-ups so that if ignore these most recently introduced

exceptional spheres, the remaining spheres we are tracking form two plumbing components,

one component agrees with Γ and the other component gives the dual plumbing Γ′.

To see that the plumbings coming from Γ and Γ′ glue together to give the blow-up

of our original sphere bundle, imagine cutting the blown-up sphere bundle as shown above,

along an equator of each regular fiber, and along the equator of the last exceptional sphere

in each exceptional fiber, so that these equators all match up smoothly to form a 3-manifold.

More precisely, we can find a Morse function φ on the blow-up of the ruled surface to [0, 1],

whose values on the spheres for Γ are strictly less than 1
2
, and whose values on the spheres

for Γ′ are strictly greater than 1
2
. Then the 3-manifold we are interested in is φ−1(1/2).

Considering the singular fibration restricted to φ−1([0, 1/2]), we see the generic fibers are

disks which intersect once with the proper transform of the ∞-section (now the central

sphere of Γ). The singular fibers contain the spheres in the arms of Γ, together with disks

(the lower half of the last exceptional spheres), which intersect once with the last sphere in

each arm. There is a deformation retract of φ−1([0, 1/2]) to the spheres of Γ defined by taking

a deformation retract of each disk to the point where it intersects a sphere of Γ. Therefore,

φ−1([0, 1/2]) is a regular neighborhood of the spheres of Γ, in other words a plumbing. The

corresponding argument shows that φ−1([1/2, 1]) is a plumbing for the dual graph Γ′. Note

that each sphere in either graph is a symplectic submanifold since it is either one of the
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Figure 3.3: A sequence of blow-ups, keeping track of the spheres whose neighborhoods are
plumbings. In the last stage we can see the star-shaped plumbing with 4 vertices, central
vertex labeled with −4, and the three arms are labelled with −2, and its dual plumbing
which is also star-shaped with 4 vertices, but the central vertex is labeled with +1 and three
arms labeled with −2. The two plumbings are glued together along equators of the regular
fibers and equators of the −1 spheres on the exceptional fibers.
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distinguished sections, a fiber, an exceptional sphere, or the proper transform of one of these

objects.

3.1.1 Dually Positive Graphs

The condition that a configuration of spheres is dually positive, ensures that one

can build a dual configuration which is a star-shaped graph whose central vertex has self-

intersection number +1. To see this, suppose the central vertex of the dually positive con-

figuration has square e0 ≤ −k−1 where k is the number of arms in the original graph. Start

with a sphere bundle with infinity section of self-intersection number −1, and zero section

of self-intersection number +1, and keep track of d = −e0 − 1 fibers (of self-intersection

number 0). Blow up once at the intersections of each of the −1 − e0 fibers with the (−1)

infinity section. The proper transform of the zero section now has self-intersection number

e0, the exceptional spheres and proper transforms of the fibers have self-intersection number

−1, and the zero section is unchanged so it still has self-intersection number +1. Next, in

k of these singular fibers, blow-up at the intersection of the new exceptional sphere with

the proper transforms of the original fiber. By continuing to blow up at points where an

exceptional sphere of square −1 intersects an adjacent sphere, it is possible to build the

dually positive graph emanating from the infinity section and ending just before the most

recent exceptional −1 spheres in each fiber, without ever blowing up at a point on the zero

section. Therefore the dual graph has central vertex with coefficient +1, and −1− e0 arms,

whose vertices have all negative coefficients.

Note that when e0 < −k−1, the dual graph contains d = −e0−1 > k arms, but only

k of them are used to construct the singular fibers. Each of the remaining −e0 − 1− k arms
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shows up in the dual graphs construction as two −1 spheres, one of which is adjacent to the

proper transform of the negative infinity section and will be cut in half to split the graph

from the dual graph. The remaining −1 sphere (the proper transform of a regular fiber after

one blow-up at its intersection with the 0-section) persists in the dual graph as a short arm.

Note that when e0 < −k − 1, there are other ways to produce a concave dual graph

containing a +1 sphere, but the convention described here which only allows −1 spheres to

appear in their own arms yields the strongest classification results.

3.2 McDuff’s classification for closed symplectic manifolds

As explained in section 3.1.1, our condition that the configuration of spheres be dually

positive ensures that the concave cap coming from the dual graph construction contains a

sphere of self-intersection number +1. This condition is useful due to the following classifi-

cation theorem.

Theorem 3.2.1 (McDuff [McD90]). If (V 4, C2, ω) is a minimal symplectic pair (namely

V \ C contains no exceptional curves), where C is a rational curve with self-intersection

C · C = p ≥ 0, then (V, ω) is symplectomorphic either to CP2 with its usual Kahler form or

to a symplectic S2 bundle over a compact surface M . Further, this symplectomorphism may

be chosen so that it takes C either to a complex line or quadric in CP2, or to a fiber of the

S2 bundle, or (if M = S2) to a section of this bundle.

In our case, this classification simplifies to a single manifold up to blowing up sym-

plectically.
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Corollary 3.2.2. If (V 4, C2, ω) is a minimal symplectic pair where C is a 2-sphere of self-

intersection number +1 then (V, C, ω) is symplectomorphic to (CP2,CP1, ωstd).

By gluing any strong symplectic filling of a dually positive Seifert fibered space with

contact structure ξpl to a neighborhood of its dual configuration, we obtain a symplectic pair

(V, C, ω) satisfying all hypotheses of the theorem except minimality. After blowing down

exceptional spheres in V \ C, it follows that such a convex filling embeds symplectically

(up to rescaling the symplectic form) in a blow-up of (CP2, ωstd) where the blow-ups are

disjoint from the standard CP1 ⊆ CP2. The complement of the embedded convex filling is

symplectomorphic to the corresponding plumbing of spheres described by the dual graph,

and +1 sphere corresponding to the central vertex of the dual graph is identified with CP1.

3.3 Homological restrictions on embeddings of the cap

Denote by (XM , ωM) the closed symplectic manifold CP2 #M CP2 with symplectic

form ωM given by some symplectic blow up of the standard Kahler form on CP2. We would

like to determine all possible symplectic embeddings of the positive dual graph plumbing

of the concave cap. To understand possible embeddings, we first use some homological

restrictions.

First fix a standard orthogonal basis (ℓ, e1, · · · , eM) for H2(XM ;Z) where ℓ is rep-

resented by the complex projective line so ℓ2 = +1, and the em are represented by the

exceptional spheres created in the blow-ups, so e2m = −1, and ℓ · em = em · em′ = 0 for

m 6= m′. Because these are represented by symplectic spheres, we can determine how the

first Chern class of XM evaluates on each of these homology classes via the adjunction
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formula:

〈c1(XM), ℓ〉 = ℓ2 + 2 = 3

〈c1(XM), em〉 = e2m + 2 = 1

Now we would like to analyze what the spheres in the plumbing for the cap could

represent in H2(XM ;Z) in terms of this basis. We will refer to the embedded sphere repre-

senting the central vertex as C0, the symplectic spheres in the jth arm of distance i from the

center as Cj
i (so C1

1 , · · · , C
d
1 are adjacent to the central vertex). We know that these spheres

are also symplectic, so they must also satisfy the adjuction formula:

〈c1(XM), [Cj
i ]〉 = [Cj

i ]
2 + 2

Furthermore, we know that the sphere C0 which has self-intersection number +1, is sent to

the complex projective line so [C0] = ℓ. The intersection data implies spheres whose vertices

are joined by an edge have homological intersection number +1, other distinct spheres have

homological intersection number 0, and the square of the homology class represented by each

sphere is given by the decoration on the graph (which is negative for all but C0).

Now suppose that

[Cj
i ] = ai,j0 ℓ+

M∑

m=1

ai,jm em

For i = 1 we have 1 = [Cj
1 ] · [C0] = [Cj

1 ] · ℓ, so a
1,j
0 = 1. Using the adjunction formula, and

our knowledge of how c1(XM) evaluates on the standard basis we get the following formula

for the coefficients aji :

3 +

M∑

i=1

a1,jm = 1−

M∑

m=1

(a1,jm )2 + 2
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so
M∑

m=1

(a1,jm )2 + a1,jm = 0

Note that since a1,jm are integers, we have (a1,jm )2 + a1,jm ≥ 0 with equality if and only if

a1,jm ∈ {0,−1}. Therefore a1,jm ∈ {0,−1} for all m ∈ {1, · · · ,M}. Furthermore since

−n1,j = [Cj
1]

2 = 1−
M∑

m=1

(a1,jm )2,

there are precisely n1,j +1 values of m for which a1,jm is −1. Thus we get the following result.

Lemma 3.3.1. If Cj
1 is a symplectic sphere in the dual graph configuration adjacent to the

central vertex sphere, then its homology class has the form

ℓ− e1,jm1
− · · · − e1,jmn+1

For i > 1, we know that 0 = [Cj
i ] · [C0] = [Cj

i ] · ℓ. Therefore a
i,j
0 = 0 for all i > 1. In

this case the adjuction formula yields the following formula:

M∑

m=1

ai,jm = −

M∑

m=1

(ai,jm )2 + 2

so
M∑

m=1

(ai,jm )2 + ai,jm = 2

Thus, all but one of the ai,jm ’s is either 0 or 1, and exactly one ai,jm is either 1 or −2 for for each

i > 1. An inductive argument of Lisca [Lis08, Proposition 4.4] implies that ai,jm can never be

equal to −2, so there is always a unique ai,jm equal to 1. Note that Lisca’s statement refers

to linear graphs of symplectic spheres embedded in a blow-up of CP2, but each arm of the

star-shaped graph (starting at the central vertex) is a linear graph satisfying the necessary

hypotheses. Thus we conclude:
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Lemma 3.3.2. If Cj
i is a sphere in a symplectic embedding of the dual graph configuration,

such that Cj
i does not correspond to a vertex adjacent to the central vertex (i > 1) then

[
Cj

i

]
= ei,jm0

− ei,jm1
− · · · − ei,jmni,j−1

We have further data given by the fact that [Cj
1 ] · [C

j′

1 ] = 0 when j 6= j′ ∈ {1, · · · , d}:

0 = (ℓ− e
m

1,j
1

− · · · − e
m

1,j
n1,j+1

) · (ℓ− e
m

1,j′

1

− · · · − e
m

1,j′

n
1,j′

+1

)

= 1− |{m1,j
1 , · · · , m1,j

n1,j+1} ∩ {m1,j′

1 , · · · , m1,j′

n1,j′+1}|

We conclude

Lemma 3.3.3. For each distinct pair j, j′, there is exactly one em which appears with coef-

ficient −1 in both [Cj
1] and [Cj′

1 ].

Further analysis of the intersection relations yields additional rules for the homology

classes of the embedded symplectic spheres in the concave dual graph cap.

Lemma 3.3.4. The class of the exceptional sphere which appears with coefficient +1 in [Cj
2 ]

appears with coefficient −1 in sphere [Cj
1].

Proof. Assuming the forms for the homology classes specified in lemmas 3.3.1 and 3.3.2 we

get the following.

1 = [Cj
2] · [C

j
1 ] = (em0

− em1
− · · · − emn

) · (h− em′

1
− · · · − em′

p
)

= |{m0} ∩ {m′

1, . . . , m
′

p}| − |{m1, . . . , mn} ∩ {m′

1, . . . , m
′

p}|
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Lemma 3.3.5. For i > 1, either the exceptional class with coefficient +1 in [Cj
i ] appears

with coefficient −1 in [Cj
i+1] or the exceptional class with coefficient +1 in [Cj

i+1] appears

with coefficient −1 in [Cj
i ], or both. In particular, they do not share the same exceptional

class with +1 coefficient. Furthermore, the exceptional classes which appear with coefficients

−1 in [Cj
i ] are disjoint from those which appear with coefficient −1 in [Cj

i+1] unless both

conditions in the first sentence are satisfied, in which case they share exactly one exceptional

class with −1 coefficient in common.

Proof.

1 = [Cj
i ] · [C

j
i+1]

= (em0
− em1

− · · · − emn
) · (em′

0
− em′

1
− · · · − em′

p
)

= |{m0} ∩ {m′

1, . . . , m
′

p}|+ |{m′

0} ∩ {m1, . . . , mp}|

−|{m0} ∩ {m′

0}| − |{m1, . . . , mn} ∩ {m′

1, . . . , m
′

p}|

Lemma 3.3.6. If ex appears with coefficient +1 in [Cj
i ] then it does not appear with coeffi-

cient +1 in [Cj′

i′ ] for any (i′, j′) 6= (i, j).
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Proof. Suppose not. Then we obtain a contradiction as follows

0 ≤ [Cj
i ] · [C

j′

i′ ]

= (ex − em1
− · · · − emn

) · (ex − em′

1
− · · · − em′

p
)

= |{x} ∩ {m′

1, . . . , m
′

p}|+ |{x} ∩ {m1, . . . , mn}| − |{x} ∩ {x}| − |{m1, . . . , mn} ∩ {m′

1, . . . , m
′

p}|

= 0 + 0− 1− |{m1, . . . , mn} ∩ {m′

1, . . . , m
′

p}|

< 0

Lemma 3.3.7. If ex appears with nonzero coefficient in distinct classes [Cj
i ] and [Cj′

i′ ] and

we do not have that (i, j) = (i′ ± 1, j′) or that i, i′ = 1, then we have one or both of the

following two possibilities.

1. the exceptional class with coefficient +1 in [Cj
i ] appears with coefficient −1 in [Cj′

i′ ]

2. the exceptional class with coefficient +1 in [Cj′

i′ ] appears with coefficient −1 in [Cj
i ]

If only one of these possibilities holds then there is exactly one exceptional class which appears

with coefficient −1 in both [Cj
i ] and [Cj′

i′ ]. If both (1) and (2) hold, then there are exactly

two exceptional classes which appear with coefficient −1 in both.
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Proof.

0 = [Cj
i ] · [C

j′

i′ ]

= (ei0 − ei1 − · · · − ein) · (ei′0 − ei′
1
− · · · − ei′m)

= |{i0} ∩ {i′1, . . . , i
′

m}|+ |{i′0} ∩ {i1, . . . , in}| − |{i0} ∩ {i′0}| − |{i1, . . . , in} ∩ {i′1, . . . , i
′

n}|

= −|{i0} ∩ {i′0}| − |{i1, . . . , in} ∩ {i′1, . . . , i
′

n}|

If the graph for the convex filling we are considering has k arms, corresponding to

the k singular fibers in the Seifert fibered space, then the coefficient on the central vertex of

the graph, e0 determines the relationship between k and d (the number of arms in the dual

graph). As discussed in section 3.1.1, the number of arms in the dual graph is d = −e0 − 1,

and the dually positive assumption implies k ≤ −e0− 1. When d = −e0− 1 is strictly larger

than k, there are d− k additional short arms each made up of a single symplectic sphere of

self-intersection number −1. Therefore [Cj
1 ] = ℓ− e

m
1,j
1

− e
m

1,j
2

for j ∈ {k + 1, · · · , d}.

Lemma 3.3.8. If d = −e0 − 1 > k + 1 then the symplectic spheres C0, C
1
1 , · · · , C

d
1 rep-

resent one of the following sets of homology classes in terms of the standard basis for
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H2(CP
2 #M CP2) (up to relabelling).

[C0] = ℓ [C0] = ℓ
[C1

1 ] = ℓ− e1 − e· − · · · − e· [C1
1 ] = ℓ− e2 − · · · − ek − ek+1 − · · · − ed − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e· − · · · − e· [C2

1 ] = ℓ− e1 − e2 − e· − · · · − e·
...

...[
Ck

1

]
= ℓ− e1 − e· − · · · − e·

[
Ck

1

]
= ℓ− e1 − ek − e· − · · · − e·[

Ck+1
1

]
= ℓ− e1 − ek+1

[
Ck+1

1

]
= ℓ− e1 − ek+1

...
...[

Cd
1

]
= ℓ− e1 − ed

[
Cd

1

]
= ℓ− e1 − ed

Here e· indicates that there can be additional distinct em’s with coefficient −1 in these ho-

mology classes if the corresponding square is sufficiently negative. They should all be distinct

from each other and distinct from all labeled em’s.

Furthermore, if d = k+1 the above cases generalize to a family indexed by j, 0 ≤ j ≤ k

(by a symmetry we may actually assume j ≤ k/2 and the two above cases correspond to j = 0

and j = 1 respectively).

[C0] = ℓ
[C1

1 ] = ℓ− e1 − em(1,j+1) − em(1,j+2) · · · − em(1,k) − e· − · · · − e·
...[

Cj
1

]
= ℓ− e1 − em(j,j+1) − em(j,j+2) · · · − em(j,k) − e· − · · · − e·[

Cj+1
1

]
= ℓ− e2 − em(1,j+1) − em(2,j+1) − · · · − em(j,j+1) − e· − · · · − e·
...[

Ck
1

]
= ℓ− e2 − em(1,k) − em(2,k) − · · · − em(j,k) − e· − · · · − e·[

Ck+1
1

]
= ℓ− e1 − e2

Here m(a, b) are distinct for distinct pairs (a, b), and are distinct from 1, 2.

Note that some of these options may not be possible in certain cases if the self-

intersection numbers on the spheres in the dual graph configuration are not sufficiently

negative.
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Proof. First notice that there must be a common element em with coefficient −1 in all the

classes [Ck+1
1 ], · · · , [Cd

1 ]. This is trivial in the case that k + 1 = d, and follows immediately

from lemma 3.3.3 when k+2 = d. When d > k+2, lemma 3.3.3 implies that [Ck+1
1 ] and [Ck+2

1 ]

share a unique element with coefficient −1 so without loss of generality [Ck+1
1 ] = ℓ− e1 − e2

and [Ck+2
1 ] = ℓ − e1 − e3. If [Ck+3

1 ] does not have −1 coefficient for e1 then lemma 3.3.3

implies [Ck+3
1 ] = ℓ − e2 − e3, but then there is no way that [C1

1 ] can have em’s with −1

coefficient for values of m in exactly one of {1, 2}, exactly one of {1, 3}, and exactly one

of {2, 3} which is a contradiction. Since [Cj
1] and [Cj′

1 ] share exactly one element em with

coefficient −1, we find that [Ck+1
1 ] = ℓ− e1 − ek+1, · · · , [C

d
1 ] = ℓ− e1 − ed for ek+1, · · · , ed all

distinct.

Now consider the homology classes [C1
1 ], · · · , [C

k
1 ]. Each such class must either have

−1 coefficient for e1 or −1 coefficient for all of the classes ek+1, · · · , ed (not both). If d > k+1

then there can be at most one of the spheres C1
1 , · · · , C

k
1 , whose homology class has coefficient

−1 for all the classes ek+1, · · · , ed since no two [C
j
1] can share more than one ei with coefficient

−1. This proves the first part of the lemma.

When d = k+1 and [Ck+1
1 ] = ℓ−e1−e2, some of the classes [C1

1 ], · · · , [C
k
1 ] must have

coefficient −1 for e1 and the rest must have coefficient −1 for e2. Without loss of generality

we assume the first j have −1 coefficient for e1, and the rest have −1 coefficient for e2. Then

for each pair (a, b) ∈ {1, · · · , j} × {j + 1, · · · , k} we must add another em(a,b) which occurs

with −1 coefficient in [Ca
1 ] and [Cb

1]. If m(a, b) = m(a′, b′) for (a, b) 6= (a′, b′) then either

a 6= a′ so [Ca
1 ] and [Ca′

1 ] both have coefficient −1 for both e1 and em(a,b) or b 6= b′ so [Cb]

and [Cb′ ] both have coefficient −1 for e2 and em(a,b), but homology classes of distinct pairs of

spheres can only share one common element with coefficient −1 so this is a contradiction.
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3.4 Uniqueness of symplectic embedding for each homological em-

bedding

Given a finite list of homology classes a symplectic embedding of the spheres of the

dual graph into CP2#M CP2 can represent, we would like to say that there are finitely many

symplectic embeddings of the dual graph up to isotopy. There are two main steps to this

process. The first is to follow the arguments of Lisca [Lis08] to carefully blow-down to CP2,

while keeping track of how this affects the embedded spheres of the dual graph. The second

step is to analyze this blown-down embedding, and to try to understand the isotopy classes

of a regular neighborhood of the blown-down dual graph in CP2. The main conclusion of

this section will be the following theorem.

Theorem 3.4.1. Let Γ′ be a star-shaped plumbing graph, such that the central vertex corre-

sponds to a symplectic sphere C0 of self-intersection number +1, a vertex which is the only

one in its arm corresponds to a symplectic sphere Cj
1 of self-intersection number ≤ −1, and

all other vertices in the arms Cj
i correspond to symplectic spheres of self-intersection number

≤ −2. Suppose E and E ′ are symplectic embeddings of the corresponding concave symplectic

plumbing into CP2#N CP2 such that C0 is sent to the complex projective line, the induced

maps on second homology agree, and the following additional condition holds for the induced

maps on second homology.

(⋆) For each j, the homology class of the sphere adjacent to the central sphere E∗([C
j
1]) has

at most two exceptional classes ei with the property that they appear with coefficient

−1 in E∗([C
j
1 ]) and at least two other distinct classes E∗([C

j′

1 ]) and E∗([C
j′′

1 ]).
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Then there is an isotopy from E to E ′ which extends to a regular neighborhood of the

spheres.

This theorem will follow from the lemmas of the next two subsections.

Corollary 3.4.2. When e0 < −k − 1 or k ≤ 6, the isotopy class of an embedding of the

concave cap of section 3.1 for the corresponding Seifert fibered space with k singular fibers is

uniquely determined by the map induced by the embedding on second homology.

The deduction of the corollary from the proposition follows from the homological

analysis of section 3.3, particularly lemmas 3.3.3 and 3.3.8. The homological condition (⋆)

will be recast in section 3.4.2 in terms of configurations of line arrangements, and in this

language it may be easier for the reader to see how this corollary follows. Therefore, we will

discuss this deduction in section 3.4.2.

3.4.1 Blowing down

The following theorem was used by Lisca to solve this part of the problem when

classifying symplectic fillings of lens spaces. In that case, the plumbing of spheres providing

the concave cap is linear.

Theorem 3.4.3 (Lisca [Lis08] Theorem 4.2). Let ωM be a symplectic form on CP2 #M CP2

obtained from the standard Kahler form by symplectic blow-ups. Let Γ = C0 ∪ · · · ∪ Cj be a

union of ωM-orthogonal symplectic spheres, in the configuration of a linear graph, with self-

intersection numbers (1, 1− b1,−b2, · · · ,−bj), such that C0 is a complex line. Then there is

a sequence of symplectic blow-downs

(CP2 #M CP2, ωM) → (CP2 #(M − 1)CP2, ωM−1) → · · · → (CP2, ω0)
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with ω0 diffeomorphic to the standard Kahler form and such that Γ descends to two ωM

orthogonal symplectic spheres, each of self-intersection number 1.

In our situation, the dual graph is a star-shaped instead of linear. However, a star-

shaped graph is simply the union of its k arms, each of which is a linear graph emanating

from the central vertex. Therefore Lisca’s theorem applies to each of the arms of the star-

shaped dual configuration. We would like to keep track of all of these arms at once as we

blow-down the manifold. Though we do not need a new argument here, a summary of Lisca’s

proof is included here to make it clear how it applies in the star-shaped case.

In our case, the dual configuration of spheres Γ = C0∪· · ·∪Cm (in the shape of a star-

shaped graph), is assumed to be symplectically embedded in (CP2#M CP2, ωM). Here C0 is

identified with the complex projective line (by McDuff’s theorem). First, choose an almost

complex structure tamed by ωM , for which the spheres C0, · · · , Cm are all J-holomorphic.

This allows us to have more control over intersections of spheres with any J-holomorphic

sphere we blow down.

Relying on analysis of J-holomorphic curves by McDuff, Lisca proves a lemma (Lemma

4.5 in [Lis08]), which says that as long asM > 0, there exists a J-holomorphic sphere Σ such

that [Σ] · [C0] = 0 and [Σ]2 = −1. Furthermore, we can find Σ disjoint from Γ if and only if

there is a symplectic sphere S of square −1 such that [S] · [Cj] = 0 for j = 0, 1, · · · , m. Note

that Lisca stated this in the case that Γ is a linear plumbing, but the proof is unchanged for

any configuration of symplectic spheres intersecting ω-orthogonally. Therefore, it is possible

to blow down J-holomorphic spheres Σ until XM is blown down to CP2. Using the lemma,

we can first blow down any Σ’s disjoint from Γ, until there exists Σ for which [Σ] · [Cj] 6= 0 for
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some j. Because C0, · · · , Cm are J-holomorphic, Σ must intersect them non-negatively. In

our standard basis for H2(XM ;Z) as in the previous section, the fact that [Σ] · [C0] = 0 and

[Σ]2 = −1 implies [Σ] = ±ei. Given the analysis in the previous section of how to write [Cj ]

in terms of this standard basis, we find that [Σ] · [Cj] ∈ {−1, 0, 1} for every j = 0, · · · , m.

Since Σ and Cj must intersect positively, either Σ = Cj for some j, or [Σ] · [Cj] ∈ {0, 1} for

all j = 0, · · · , m. Lisca analyzes the relations between the ei’s showing up with non-zero

coefficients in different [Cj]’s within a linear plumbing, and proves that blowing down Σ

either reduces the length of the linear plumbing or reduces the absolute value of one of the

self-intersection numbers of a Cj, (j > 0), but the linear plumbing remains linear. This

implies the conclusion of Lisca’s theorem by induction.

In our case, we blow down a J-holomorphic sphere Σ, which may intersect any number

of arms in the star-shaped graph. After blowing down, at least one arm is reduced in

complexity, and each linear chain of symplectic spheres (originally these are the k arms)

remains linear. It is possible that two of these linear chains intersect after a blow-down, so

the graph would no longer be star-shaped. Because the existence of a J-holomorphic sphere

to blow down, and the homological properties of the Cj do not depend on any assumptions

about the non-intersection of the various arms, this does not prevent us from applying

induction as in the linear case. We simply need to keep track of each linear chain separately,

even as the chains intersect each other.

The conclusion is that each arm eventually descends to two symplectic spheres each

of self-intersection number 1, one of which is the original C0 (since all blow-downs were done

disjointly from C0). Therefore in total we have d+ 1 symplectic spheres of self-intersection

number 1 inside (CP2, ωstd).
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We also have that our original J descends to an almost-complex structure J0 on CP2,

which is tamed by ω0(= ωstd), and the remaining d+ 1 spheres in the reduction of the dual

graph are J0 holomorphic. Because all of these spheres must represent the homology class

ℓ and they are all J0-holomorphic, each pair of spheres must intersect at a single point.

Because the blow-downs were disjoint from C0 and each of the other d spheres intersected

C0 in a different point initially, this remains true after blowing down. The other d spheres

may intersect each other at multi-points if before blowing down, a group of them intersected

a common exceptional sphere.

Note that the intersection configuration of these spheres (the data telling which col-

lections of spheres have common multi-intersection points) is determined by the homological

embedding data. If i of the d spheres adjacent to the central vertex sphere have a common

exceptional class em appearing with coefficient −1 in their homology classes, then after blow-

ing down, those i spheres will intersect at a common i-fold multi-intersection point. Thus we

can extract the combinatorial data of the J0-holomorphic line arrangement in the blow-down

to CP2 directly from the homology classes of the embedded spheres in CP2#N CP2 which

intersect the central +1 sphere. Furthermore the homological embedding data determines

which points to blow up at to get from the blown down configuration to the original con-

figuration. The homological data also determines minimality of the filling appearing as the

complement of the concave cap.

Lemma 3.4.4. Let Γ′ be a star-shaped plumbing graph, such that the central vertex cor-

responds to a symplectic sphere C0 of self-intersection number +1, and all other vertices

correspond to symplectic spheres Cj
i of negative self-intersection number. Let E be an em-

bedding of the core symplectic spheres of Γ′ into CP2 #N CP2. Then the complement of a
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neighborhood of the image of E is minimal if and only if N is the smallest number of distinct

exceptional classes appearing with non-zero coefficient in the homology classes represented by

{E∗([C
j
i ])}i,j.

This lemma is a direct consequence of lemma 4.5 of Lisca’s paper [Lis08] which says

that there is such a disjoint exceptional (J-holomorphic) sphere if and only if there is an

exceptional class which does not algebraically intersect any of the spheres (the pseudoholo-

morphic condition allows us to equate geometric and algebraic intersection numbers).

3.4.2 Uniqueness of the pair after blowing down

The goal of this section is to analyze possible smooth isotopy classes of a regular

neighborhood of d+1 J0-holomorphic spheres in (CP2, ωstd), each homologous to CP1 ⊂ CP2.

We cannot assume that J0 is the standard almost complex structure on CP2 since we had

to choose J originally so that each of the curves C0 · · ·Cm were J-holomorphic. However,

because J0 is tamed by ωstd, it is homotopic through almost complex structures tamed by

ωstd to the standard almost complex structure Jstd. This homotopy will allow us to isotope

our J0-holomorphic spheres to complex projective lines. Then we will analyze the space of

complex projective lines which intersect according to the same combinatorial data.

Working with curves which are J-holomorphic for some J ensures that we need not

worry about algebraically cancelling intersection points between curves since all intersections

are positive. We want to control the way these d + 1 spheres intersect, because a smooth

isotopy of each of the d+1 spheres will extend to a smooth isotopy of a regular neighborhood

of their union only when the way these spheres intersect is preserved.
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First we would like to smoothly isotope our J0 holomorphic spheres to complex pro-

jective lines, while keeping the intersection configuration fixed. A theorem of Gromov allows

us to isotope each of the spheres through Jt-holomorphic curves to complex projective lines,

but unfortunately we cannot always preserve the intersection configuration in sufficiently

complicated configurations. However we will show that we can control this for configura-

tions where no line passes through more than two multi-intersection points of multiplicity

at least three.

These configurations will cover all of those we will obtain by blowing down dual graphs

for dually positive Seifert fibered spaces with at most 6 singular fibers or with k singular fibers

and e0 < −k−1 (more complicated configurations can arise when e0 = −k−1 and k is large)

as in corollary 3.4.2. The reason this covers configurations when e0 < −k − 1 comes from

the formula for the homology classes in lemma 3.3.8. The dual graph configuration contains

one arm made up of a single sphere of square −1, and the homology class of this embedded

sphere is ℓ− e1 − e2 up to relabeling the exceptional classes. Every other sphere adjacent to

the central vertex must have either e1 or e2 appearing with −1 coefficient in its homology

class so e1 and e2 can correspond to multi-intersection points. No other exceptional classes

can appear with non-zero coefficient in more than two of the homology classes of the spheres

intersecting the central +1 sphere. Therefore there are at most two multi-intersection points

of multiplicity greater than two, and if there are two such points then one of the lines of

the configuration passes through both of them (the blow-down of the −1 sphere in the dual

graph). These configurations appear in figure 3.4. When the number of singular fibers k is

at most 6 and e0 = −k − 1, there are exactly k ≤ 6 arms in the dual graph configuration.

Thus this blows down to k+1 pseudoholomorphic lines, where one necessarily intersects the
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(a) One multi-point,
one generic line

(b) One multi-point,
two generic lines

(c) Two multi-points,
one generic line

Figure 3.4: The combinatorial intersection configurations which can occur after blowing
down an symplectic embedding of a star-shaped configuration of spheres, where the central
sphere has square +1, and there is one arm consisting of a single sphere of square −1. These
appear as concave caps for Seifert fibered spaces with e0 < −k − 1.

others generically, so there are not enough lines to form a configuration where any one line

passes through more than two multi-intersection points.

Lemma 3.4.5. Let J be an almost complex structure on CP2 tamed by the standard sym-

plectic structure. Suppose C0, C1, · · · , Cd are J-holomorphic spheres embedded in CP2 each

representing the homology class of the complex projective line ℓ intersecting according to a

combinatorial configuration such that no Cj passes through more than two multi-intersection

points (points where at least three of the Cj have a common intersection). Then the spheres

C0, C1, · · · , Cd can be isotoped to complex projective lines through pseudoholomorphic spheres

such that the combinatorial intersection data of the Cj remains unchanged throughout the

isotopy.

Proof. Because J0 and Jstd are both tamed by ωstd, and the space of such J is contractible

and thus connected, there exists a family of almost complex structures {Jt} on CP2 starting

at J0 and ending at J1 = Jstd. A theorem of Gromov [Gro85] states that for any J tamed by

the standard symplectic structure on CP2, any two points v1 6= v2 ∈ CP2 lie on a unique non-
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singular rational (i.e. diffeomorphic to S2) J-holomorphic curve homologous to CP1 ⊂ CP2.

Therefore for each Jt in our homotopy, we can find a unique Jt-holomorphic sphere through

two given points.

By fixing two points on each sphere and considering the family of Jt-holomorphic

spheres through those two points, we get an isotopy C0
t , C

1
t , · · · , C

d
t from the original em-

bedded J-holomorphic spheres to complex projective lines. During this isotopy we can fix

exactly two points on each sphere. If at a given intersection point, we choose to fix that

point on every sphere passing through it, then that intersection is preserved (though poten-

tially other spheres may pass through that point during the isotopy if they are not otherwise

constrained). We will fix the multi-intersection points in this way. We are allowed to fix

these intersections as long as there are no more than two on each sphere, which is the hy-

pothesis in the proposition. Thus we can choose the isotopy so that at worst the intersection

configuration becomes less generic. We will now discuss how to modify this isotopy to one

which preserves the intersection configuration throughout.

The first phenomenon which we need to avoid, is that three of the multi-intersection

points which we fix throughout the isotopy could become Jt-collinear for some t > 0, meaning

that they all lie on the same Jt-holomorphic sphere in the homology class ℓ. Our initial

assumption says that this does not occur for t = 0, so if it occurred for t > 0 this would allow

C i
t and Cj

t to coincide for i 6= j in certain configurations and thus change the intersection

configuration drastically. To ensure this does not occur, we will perform small isotopies at the

beginning, to move these fixed multi-intersection points. We have fixed the family {Jt}t∈[0,1].

Choose an ordering of the multi-intersection points in CP2, p1, p2, p3, · · · , pz. Leaving p1 and

p2 fixed, consider the union of the Jt-holomorphic lines through p1 and p2 over all 0 ≤ t ≤ 1.
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This subset of CP2 will have at least codimension one. Therefore, if p3 lies in this subset,

it can be perturbed slightly to p′3 so that it no longer is Jt-collinear with p1 and p2 for any

t. Define an isotopy of the curves C0, C1, · · · , Cd by choosing a path γ(s) from p3 to p′3.

For each sphere Cj passing through p3, if it passes through another pi fix that point, and

if not choose any other point on the sphere to fix. Then isotope Cj by defining Cj
s as the

unique J0-holomorphic sphere through the chosen fixed point and γ(s). For each sphere that

does not pass through p3, fix it throughout this isotopy. By choosing the perturbation p′3

sufficiently close to p3, we can ensure that the intersection configuration of C0, C1, · · · , Cd

is unchanged during this small isotopy.

Now consider the space of Jt lines through p1 and p2, p2 and p3, and p1 and p3 varying

with t. Again this subspace has at least codimension one, so p4 can be perturbed to avoid this

subspace and a corresponding isotopy of the Cj can be defined preserving the intersection

configuration. Continue this process for each of the multi-intersection points. This shows

that up to J0-holomorphic isotopy, we can assume that no triple of the multi-points is Jt-

collinear for any t ∈ [0, 1].

Now, after any needed perturbations in the previous step, redefine the isotopy C0
t ,

C1
t , · · · , C

d
t by fixing two points on each of (the newly isotoped) C0, C1, · · · , Cd, including all

of the multi-intersection points and considering the unique Jt-holomorphic line through those

two points. Consider any pair Cj
t , C

j′

t which both pass through exactly two multi-intersection

points. If they intersect at a fixed multi-point, their intersection remains fixed for all t. If

they do not intersect at one of the fixed multi-intersection points, then their intersection will

never occur at one of those fixed multi-intersection points because no three of those points

ever lie on the same Jt-holomorphic line. Thus the only way the intersection configuration
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can change is if one Cj0
t which passes through at most one fixed multi-intersection point

passes through an intersection point of two or more spheres that it is not supposed to.

We will remove any such degeneracies by perturbing the relevant Cj0
t ’s one at a time.

We can isotope each such Cj0
t through Jt-holomorphic spheres to avoid this phenomenon as

follows. Suppose Cj0
t passes through the intersection of spheres Cj1

t , · · · , C
jp
t for t ∈ T when it

shouldn’t according to the original intersection configuration. Parameterize a neighborhood

of this intersection point on Cj1
t by a small disk centered on the degenerated intersection

point. Let ηθ(r) parameterize a ray from the center of the disk to a circle of radius ε and

angle θ. Define Cj0
t,r to be the unique sphere through the point ηθ0(r) and any multi-point

that Cj0
0 is supposed to pass through, or if Cj0

0 does not pass through any multi-intersection

point, some other fixed point on Cj0
t away from Cj1

t . Defining Cj
t,r = Cj

t for j 6= j0, we get a

2-parameter family of configurations of spheres. The multi-intersection points are fixed for

all r, t. By choosing the length of the ray ε sufficiently small, we can ensure that no new

degeneracies of the configuration are introduced by the r-isotopy away from the degeneracy

we are focusing on. Now for r > 0 and t ∈ T, Cj0
t,r does not pass through Cj1

t,r ∩ · · · ∩ C
jp
t,r so

the degeneracy is removed for the times of initial concern. However, it is possible that this

degeneracy appears for r > 0 for other times t ∈ I \T where a degeneracy did not previously

exist. We indicate this schematically in figure 3.5, where the red indicates points (t, r) where

the degeneracy occurs where Cj0
t,r passes through Cj1

t,r ∩ · · · ∩ C
jp
t,r.

The key to finding an isotopy without these degeneracies is that we have an extra

dimension to perturb in. Instead of requiring Cj0
r,t to pass through the point ηθ0(r) on Cj1

t

we can vary the angle θ. For each fixed t and corresponding almost complex structure

Jt there is a unique point on Cj1
t which we are trying to make Cj0

t avoid: its intersection
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Figure 3.5: Schematic for an isotopy of a configuration and its potential to degenerate. By
utilizing the angular dimension there is a path from s = 0, t = 0 to t = 1 which avoids the
red degenerate points.

with Cj2
t , · · · , C

jn
t . Therefore, if the degeneracy occurs at some (r0, t0) using the ray at

angle θ0, it will not occur at (r, t0) for any r using a different angle θ′. Thus we remove the

degeneracy by modifying this isotopy by replacing ηθ0(r) by ηθt(r) where θt is an angle chosen

as a function of t to avoid the degeneracy we are focusing on. The essential idea for this

argument is that we can perturb the line in a real 2-dimensional space (because we are only

trying to fix at most one multi-intersection point on the complex line) and the degeneracies

we want to avoid are 0-dimensional, so we can find a 1-parameter family of configurations

which avoid the degeneracies. We repeat this for other spheres contributing to degeneracies

and eventually find an isotopy from the J0-holomorphic configuration we started with (at

r = t = 0) to a Jstd-holomorphic (complex) configuration (at t = 1).

This tells us that, if there are no more than two multi-intersection points on any

curve, all J-holomorphic configurations for J tamed by ωstd are isotopic. Now we would

like to determine the number of isotopy classes of J-holomorphic configurations in given

combinatorial arrangements of the types covered by lemma 3.4.5.
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Lemma 3.4.6. Fix an almost complex structure J on CP2 tamed by the standard symplectic

structure. Let I be a combinatorial intersection configuration of lines in which no line passes

through more than two multipoints. Then the space of J-holomorphic lines with combinatorial

intersection configuration I is path-connected and non-empty.

Proof. It is well known that through any two points in CP2 there is a unique complex pro-

jective line. The same is true for J-holomorphic spheres in the homology class of a complex

projective line by Gromov [Gro85]. Each multi-intersection point in the configuration I

(where at least three lines pass through the same point), must be placed somewhere in CP2.

The multi-intersection points must be placed at different positions and no three of them

should be co-linear. The space of such points is parameterized by (CP2)×M \ (∆∪Λ) where

∆ indicates the fat diagonal consisting of points (x1, · · · , xM) where xi = xj for some i 6= j,

and Λ consists of the set of points (x1, · · · , xM) where xi, xj, xk are J-collinear for distinct

i, j, k ∈ {1, · · · ,M}. As discussed in the previous lemma, ∆ and Λ have co-dimension ≥ 2 in

(CP2)×M so (CP2)×M\(∆∪Λ) is a connected, non-empty, non-compact manifold of dimension

4M > 0. We can parameterize the space of J-holomorphic lines with combinatorial intersec-

tion I where the multi-intersection points occur at a fixed (α1, · · · , αM) ∈ (CP2)×M \(∆∪Λ)

as follows. We will build up the configuration space by placing the lines one by one and adding

an additional product factor to the configuration space for each line. For any line in the

configuration which passes through two multi-intersection points, its position is completely

determined by J and the points αi and αj in CP2 which it is required to pass through.

Thus the configuration space for placing each of these J-holomorphic lines is a single point

(so they are trivial product factors in the configuration space). For J-holomorphic lines

which pass through only one multi-intersection point αi, the space of possibilities for such
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a line is path-connected and (real) 2-dimensional, and there is a 0-dimensional subspace

which must be removed corresponding to the lines which pass through αi and some other αj .

This can be more precisely parameterized by the points on any chosen J-holomorphic lines

which is disjoint from αi, minus the points on that line which are J-collinear with αi and

some other αj . For J-holomorphic lines which pass through no multi-intersection points,

there is a path-connected real 4-dimensional space of possibilities parameterized by pairs of

points on a chosen pair of J-holomorphic lines disjoint from the αi, with a 2-dimensional

subspace removed consisting of pairs of points which are J-collinear with some αi. The prod-

uct of these path-connected non-empty factors will again be path-connected and non-empty.

From this product we must remove some further subspaces corresponding to configurations

where two of the lines (which pass through 0 or 1 multi-intersection point) coincide, or in-

tersect non-generically at a point that is not an αi. Similarly to the previous lemma, these

subspaces have co-dimension at least 2, so removing them does not change the connected-

ness or non-emptyness of the configuration space. Thus the configuration space MI,J of

J-holomorphic lines intersecting according to I maps to (CP2)×M \(∆∪Λ) by specifying the

multi-intersection points, and the fiber above each (α1, · · · , αM) is connected and non-empty.

We conclude that MI,J is connected and non-empty as claimed.

Remark: In contrast, if we considered a configuration where some of the lines passed

through three or more multi-points, the fact that such a line exists puts a constraint on the

variables determining the earlier lines. In the standard complex case, these yield polyno-

mial relations on the homogeneous coordinates of the points determining the lines. With

sufficiently many lines, one can construct intersection configurations for which the space of

complex projective lines in that configuration is disconnected or empty. It is interesting to
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study whether the combinatorial arrangements that can be realized by complex projective

lines are the same as those which can be realized by J-holomorphic versions for other almost

complex structures.

3.5 Finite classification results

We conclude this chapter by bringing these results together to deduce a finite classi-

fication theorem.

Theorem 3.5.1. If Y is a Seifert fibered space with k singular fibers and either

1. e0 = −k − 1 and k ≤ 6, or

2. e0 ≤ −k − 2

then (Y, ξpl) has finitely many minimal strong symplectic fillings up to diffeomorphism. Loose

upper bounds can be computed directly from the Seifert invariants.

Proof. From sections 3.1 and 3.2 we deduced that for a given such Y , there is a chosen

concave plumbing of spheres, and strong symplectic fillings of Seifert fibered spaces all arise

as the complement of a symplectic embedding of this concave plumbing into CP2 #N CP2

for some N . The fillings are minimal precisely when N is the smallest number of exceptional

classes appearing with non-zero coefficient in the homology class of some sphere of the

concave plumbing. By section 3.4 and specifically corollary 3.4.2 we conclude that for each

induced map on second homology, there is a unique smooth isotopy class of embeddings of

the concave plumbing. Therefore the theorem follows from an upper bound on the number

of possible distinct induced maps on second homology.
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By lemmas 3.3.1 and 3.3.2, the homology classes of the Cj
i in terms of the standard

basis for H2(CP
2#N CP2) have the forms

[Cj
1] = ℓ− e1,jm1

− · · · − e1,jmn1,j+1

and for i > 1
[
Cj

i

]
= ei,jm0

− ei,jm1
− · · · − ei,jmni,j−1

so up to symmetry of relabelling the exceptional classes, the only possible differences be-

tween homological embeddings are determined by which exceptional classes appear with

non-zero coefficient in which collections of sphere classes. To obtain precise bounds, there

is a combinatorial problem to solve subject to restrictions determined by the intersection

data of the spheres (lemmas 3.3.3, 3.3.5, 3.3.6, and 3.3.7), but we can easily get a very loose

upper bound on the number of possibilities. If S =
∑

i,j(ni,j +1), then there are less than S

different exceptional classes which have non-zero coefficient in any [Cj]. Thus there are less

than SS arrangements of these ei into the slots above, thus giving an upper bound on the

number of induced maps on second homology.
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Chapter 4

Explicit classifications and examples

In this chapter we will provide classifications and examples of symplectic fillings for

many families of Seifert fibered spaces. We will start with a very explicit simple example and

work out all of the details carefully in this case. Later examples will follow similar methods so

some of the intermediate steps will be abbreviated. To understand these examples explicitly

and to discover Lefschetz fibrations supporting these fillings, we will make significant use of

handlebody diagrams and Kirby calculus tools. A reader unfamiliar with these tools should

certainly spend some time with part 2 of the book by Gompf and Stipsicz [GS99].

4.1 Simplest Examples

Because the number of symplectic fillings is determined by possible ways of writing

the homology classes of the spheres in the dual graph, one can obtain a simple family of

examples by insisting that the dual graph is star-shaped with three arms, and each arm has

length one as in figure 4.1b. These are the dual graphs of three armed graphs with central

vertex decorated by −4 and all other vertices decorated by −2. These graphs depend on

three positive integer parameters n1, n2, and n3 which determine the lengths of the arms as

in figure 4.1a, and are the negations on the coefficients of the spheres in the arms of the dual

graph. We work through the classification of convex fillings for this example in full detail to
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−n3

(b) Dual Graphs

Figure 4.1: The graphs and dual graphs representing a simple family of plumbings.

make it clear how to obtain the possible diffeomorphism types of symplectic fillings from the

homological restrictions. In this simple example we will label the three spheres in the three

arms of the dual graph C1, C2, and C3.

Now we need to determine the possible ways to write [C0], [C1], [C2], [C3] in terms of

the standard basis (ℓ, e1, · · · , eM) for H2(XM ;Z). By lemma 3.3.1, we know that they must

have the form

[C0] = ℓ

[C1] = ℓ− ei1
1
− · · · − ei1n1+1

[C2] = ℓ− ei2
1
− · · · − ei2n2+1

[C3] = ℓ− ei3
1
− · · · − ei3n3+1

and by lemma 3.3.3, |{ij1, · · · , i
j
nj+1} ∩ {ij

′

1 , · · · , i
j′

nj′+1
}| = 1 for j 6= j′ ∈ {1, 2, 3}. There are

exactly two different ways three sets can have each pairwise intersection be a unique element.

The first is that they all share a single element in common, and the second is that each of

the three pairs has a different common element. Up to relabeling, the two possibilities are

as follows.
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Case A Case B
[C0] = ℓ [C0] = ℓ
[C1] = ℓ− e1 − e11 − · · · − e1n1

[C1] = ℓ− e1 − e2 − e11 − · · · − e1n1−1

[C2] = ℓ− e1 − e21 − · · · − e2n2
[C2] = ℓ− e1 − e3 − e21 − · · · − e2n2−1

[C3] = ℓ− e1 − e31 − · · · − e3n3
[C3] = ℓ− e2 − e3 − e31 − · · · − e3n3−1

Note here all of the eji are all distinct from each other and from the em’s.

Now we can see how each of these translates into an embedding of the dual config-

uration. After blowing down all exceptional spheres, the proper transform of the image of

the dual graph spheres under the embedding will be four symplectic spheres homologous to

CP1, and by lemma 3.4.5 we may assume that they are four complex projective lines. In

case A, e1 appears in [C1], [C2] and [C3] with non-zero coefficient, so when we blow up the

sphere representing e1, it will be at a point of intersection of three of the original +1 spheres.

The remaining blow-ups are done on a point of a single one of these three spheres, so that

the resulting proper transforms have sufficiently negative self-intersection numbers.

In a Kirby diagram, the original four complex projective lines are represented by four

+1 framed unknots with a single positive twist as in figure 4.2a. In order to ensure this is a

diagram for CP2, we cancel the extra three 2-handles with three 3-handles, and close off the

manifold with a 4-handle. The first blow-up in case A introduces a new −1 framed unknot

which links three of the four original link components, untwists these three components, and

reduces the framing coefficients on each by 1. The remaining blow-ups in case A introduce

more −1 framed unknots which link once with one of the three untwisted original link

components and reduce the corresponding framing coefficient by 1. The resulting diagram

is shown in figure 4.2b.
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(a) Diagram for
CP2 with four +1
spheres.

(b) Blow up in
case A.

(c) Blow up in
case B.

Figure 4.2

65



Similarly in case B, the blow-ups corresponding to e1, e2, e3 are done at intersections

of the three pairs C1, C2, and C3, and the other blow-ups are done at points on only one of

their proper transforms. In the Kirby diagram, these are visible in figure 4.2c.

The concave dual plumbing spheres are is visible in each of the diagrams for a blow-up

of CP2 as the union of the cores of four 2-handles together with their Seifert surfaces pushed

into the 0-handle. We wish to find the diffeomorphism types of the complements of these

embeddings, since these are the potential symplectic fillings.

Because the union of the Seifert surfaces of the four attaching circles for C0, C1, C2, C3

is connected, their complement in the 0-handle retracts to a subset of the boundary of the

0-handle. Therefore the complement of the dual configuration is given by deleting the 0-

handle and the four 2-handles corresponding to C0, C1, C2, C3. It is easier to understand

the diffeomorphism type of the resulting manifold with boundary by turning the manifold

upside down so the boundary appears on the top instead of on the bottom. Since both

possible diagrams (figures 4.2b and 4.2c) have three 3-handles, the resulting upside-down

handlebody in the complement of the dual configuration will have three 1-handles, together

with 2-handles corresponding to all the extra 2-handles in the diagram which are not part

of the dual configuration, coming from the blow-ups. The boundary of the 0-handle and

1-handles is #3S
2×S1. This appears as a surgery diagram given by the mirror image of the

original diagram with surgery coefficients the negations of the framings. Surgery coefficients

are put in brackets, 〈·〉. An attaching circle of an upside down 2-handle will be a 0-framed

meridian of the surgery circle corresponding to the attaching circle of the original 2-handle

(see [GS99] for more details on turning handlebodies upsidedown). In order to get the

diagram into a more standard form, we perform diffeomorphisms on the boundary between
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the 1-handlebody and the 2-handles until the boundary looks standard (like 0-surgery on the

three component unlink). Once the boundary of the 1-handlebody looks standard, we can

replace each zero surgered unlink component with a dotted circle representing a 1-handle.

The corresponding diagrams are in figures 4.3a and 4.3c. Further handleslides and 1-2 handle

cancellations yield figure 4.3d.

Notice that the diagram in figure 4.3d is the original plumbing of spheres, which we

know has a standard symplectic structure with convex boundary inducing ξpl by theorem

2.4.1.

In the embedding in figure 4.2c determined by case B, we find a different possible

diffeomorphism type for a symplectic filling. The complement of the dual configuration

turned upsidedown is given by figure 4.4a. Figures 4.4b, 4.4c, and 4.4d are obtained by

surgery and handle moves.

Note that the resulting manifold in figure 4.4d for case B can be obtained from the re-

sulting manifold in figure 4.3d by a rational blow-down of the −4 framed sphere (the 1-handle

and the black 2-handle form a rational homology ball). Because the symplectic structure

on the manifold in figure 4.3d, has the −4-framed sphere as a symplectic submanifold, by

an observation of Gompf [Gom95] we can cut out this −4-framed sphere and replace it with

the rational homology ball as in figure 4.4d such that the symplectic structure extends over

the rational homology ball. Note that this does not change the symplectic structure in a

neighborhood of the boundary of the plumbing of spheres in figure 4.3d, so the boundary

remains convex and induces the same contact structure ξpl.

Alternatively we can arrange this diagram to be a Stein handlebody. If we arrange
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(a) Upsidedown complement of
dual configuration in case A

(b) Moves on surgery diagram (c) Simplified and using dotted
circle notation

n1 − 1

n2 − 1

n3 − 1

−4

−2
−2

−2
−2−2

−2

(d) Handleslides and cancellations

Figure 4.3: The diffeomorphism type of the possible symplectic filling from case A.
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(a) Upsidedown complement of
dual configuration in Case B

(b) Moves on surgery diagram

-1

-1

-1

-1

-1

-1
-1

-1

-1

1n -1
2n -1

3n -1

(c) Dotted circle notation

-3

-2

-2

-2

-2

-2

-2

-1
1n -1

3n -1

2n -1

(d) Handle cancellation

Figure 4.4: The diffeomorphism type of the possible symplectic filling from case B.
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Figure 4.5: Stein handlebody for figure 4.4d. Framings on 2-handles are given by 1 less than
the Thurston-Bennequin number of the attaching circle.

that the Kirby diagram is in a standard form such that all the 2-handles are contained in

a rectangular box, the two attaching balls for each of the 1-handles are aligned on opposite

sides of the box, and the 2-handles are attached along Legendrian tangles inside the box

such that the framing coefficient is given by 1 less than the Thurston-Bennequin number

of the attaching circle then there exists a Stein structure on this 4-manifold (by [Eli90b],

[Gom98]). Replacing the dotted circle in figure 4.4d with two attaching balls, and keeping

track of framings carefully, after isotopies we can achieve a diagram where the 2-handles are

attached along Legendrian knots with framing coefficients given by tb − 1 in figure 4.5. To

verify that the contact structure is correct, we look at the classification of contact structures

on these Seifert fibered spaces. In these cases, there are three distinct contact structures

which are distinguished from each other by their Euler class. We can compute the Euler

class of the induced contact structure on the boundary of a Stein manifold in a standard way

involving rotation numbers of the attaching circles (see [Gom98]). To check this matches the

Euler class of the contact manifold we started with, track PD(e(ξ)) through a diffeomorphism

taking this diagram representing the 3-manifold to the standard one as the boundary of a

70



star-shaped plumbing of spheres.

A third way to see the convex symplectic structure on this manifold is to view it as

a Lefschetz fibration over a disk. By rotating the projection plane of the diagram in figure

4.4b by 90◦ (look at the diagram in figure 4.4b from the left side of the page), and then

using dotted circle notation, we get figure 4.7a. We claim this diagram represents Lefschetz

fibrations which induces an open book decomposition on its boundary that support the

contact structure ξpl. The Lefschetz fibration will have base D2 and regular fibers 3-hold

disks, D3 = D2 \ {N(p1), N(p2), N(p3)} where {N(pi)} are disjoint neighborhoods of points

contained in the interior of D2. We obtain a handlebody diagram for D2 × D3 from the 3

disjoint parallel dotted circles, because one can think of a dotted circle as the removal of a

2-handle from the interior of the 0-handle. If we view the 0-handle as D2 ×D2, we can view

the dotted circles as removing a neighborhood of D2 ×{pi}. Then we attach the −1 framed

2-handles along the boundary of D2 × D3. We can see a trivial open book decomposition

with pages D3 on ∂(D2 ×D3) = S1 ×D3 ∪D
2 × [∂ D2 ⊔ ∂ N(p1) ⊔N(p2) ⊔ ∂ N(p3)]. Note

that each attaching circles of a 2-handles lies in a page of this trivial open book and the

Seifert framing in the handlebody diagram agrees with the page framing coming from this

open book decomposition. Therefore the framing on the 2-handles is −1 relative to the page

framing, so the attaching circles are vanishing cycles in a Lefschetz fibration.

It is useful to understand the open book decomposition supporting ξpl given to us by

theorem 2.4.1. The construction of Gay and Mark tells us that the pages of the open book

are given by the surface obtained by connect summing |sj| copies of D
2 to each sphere Cj in

our graph, and then connect summing these surfaces according to the plumbing graph. In

our case, the central sphere C0 has s0 = −4+3 = −1, the spheres in the arms but not on the
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Figure 4.6: A page of the open book decomposition supporting ξpl given by [GM13]. A
product of Dehn twists about the blue curves gives the monodromy.

ends have sj = −2 + 2 = 0, and the spheres on the ends have sj = −2 + 1 = −1. Therefore

the pages are surfaces as in figure 4.6. The monodromy is given by a product of positive

Dehn twists about the simple closed curves around each connect sum neck, shown as the

blue curves in figure 4.6. Note that the order of these Dehn twists does not matter, because

the curves are all disjoint from each other so the corresponding Dehn twists commute in the

mapping class group.

On the other hand, our Lefschetz fibration induces an open book decomposition on

its boundary whose pages are disks with three holes and whose monodromy is a product of

positive Dehn twists about the vanishing cycles ordered as in figure ??. This monodromy

is equivalent by a lantern relation to positive Dehn twists about the curves in figure 4.7c,

which is equivalent to the open book decomposition determined by figure 4.6 which we know

supports ξpl. Therefore our filling has the structure of a Lefschetz fibration which induces

an open book decomposition on its boundary that supports the contact structure ξpl we are

interested in.
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(a) Lefschetz fibration (b) Open book decomposi-
tion

(c) Equivalent open book

Figure 4.7: The Lefschetz fibration is visible in this handlebody description of the second
symplectic filling, and the open book decomposition induced on the boundary has mon-
odromy given by a product of positive Dehn twists about the curves pictured here.
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Since the vanishing cycles in this Lefschetz fibration are homologically essential, this

4-manifold supports a Stein structure, inducing ξpl on the boundary. The Stein structure

induces a convex symplectic structure on this filling.

We can conclude from this detailed analysis multiple ways of seeing the following

classification for this case.

Theorem 4.1.1. If (Y, ξpl) is the convex boundary of a dually positive plumbing of spheres,

where the star-shaped graph has exactly three arms, the central vertex has self-intersection

coefficient −4, and each arm has arbitrary length, but each sphere in any arm has self-

intersection coefficient −2 then (Y, ξpl) has exactly two minimal strong symplectic fillings up

to diffeomorphism, given by the original symplectic plumbing and the manifold obtained by

rationally blowing down the central −4 sphere.

4.2 A family with e0 ≤ −k − 3

We can provide a complete classification for a similar family to our simplest family

in the case where e0 is sufficiently negative.

Theorem 4.2.1. If (Y, ξpl) is the boundary of a dually positive plumbing of spheres with k

arms, where the coefficient on the central vertex is e0 ≤ −k − 3, and the coefficients on the

spheres in the arms are all −2, then all diffeomorphism types of minimal strong symplectic

fillings are obtained from the original plumbing of spheres by a rational blow-down of the

central vertex sphere together with −e0 − 4 spheres of square −2 in one of the arms.

Proof. When the central vertex on our graph is labeled by e0 ≤ −k−3 where k is the number

of arms in our graph, the dual graph will have d = −e0 − 1 arms, where d− k of these arms
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n1 − 1

n2 − 1

nk − 1−2

−2 −2−2−2

−2

e0

(a) Graphs

−n1

−n2

−nk

−1

−1

+1

(b) Dual graphs

Figure 4.8: A simple family of graphs and their dual graphs (e0 ≤ −k−3 and n1, n2, · · · , nk ≥
2).

are made up of a single symplectic sphere of square −1. If we assume all the arms of the dual

graph have length one, the possible homology classes each dual graph sphere can represent

is completely determined by lemma 3.3.8. The graphs that these correspond to have central

vertex with coefficient e0 and k arms, each made up of some number of spheres of square −2

as in figure 4.8.

When max{n1, · · · , nk} < d− 2 = −e0 − 3, only one of the homology representations

in lemma 3.3.8 is possible and this corresponds to the diffeomorphism type of the original

plumbing of disk bundles over spheres. When max{n1, · · · , nk} ≥ d− 2 = −e0 − 3, we have

other diffeomorphism types obtained from the original plumbing of disk bundles over spheres

by a rational blow-down of a linear subgraph consisting of the central vertex and the next

−e0 − 4 spheres of square −2 in one of the arms. Such rational blow-downs were shown

to be symplectic operations by Symington in [Sym98]. Since we can perform this operation

on the interior of the filling, this will not change the convex symplectic structure near the

boundary. Therefore we can realize all these diffeomorphism types as convex symplectic

fillings. The handlebody diagrams of these embeddings, and the Lefschetz fibrations on

their complements are described in section 6.2.2.
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n1 − 1

n2 − 1

nk − 1−2

−2 −2−2−2

−2

−k − 2

(a) Graphs

−n1

−n2

−nk
−1

+1

(b) Dual graphs

Figure 4.9: Graphs and dual graphs for a family where e0 = −k − 2.

4.3 New fillings in the case e0 = −k − 2

The previous section considered families of dual graphs which include an arm with

a single −1 sphere where all of the complementary fillings are obtained by already well

understood operations: the Fintushel-Stern rational blow-downs. Here we consider the case

when e0 = −k−2 to utilize the final and most interesting homological arrangements specified

in lemma 3.3.8. The corresponding fillings are genuinely new, which will be discussed in

greater detail in section 5. The graphs and dual graphs we consider here are shown in figure

4.9.

As in the case where e0 ≤ −k − 3, each corresponding Seifert fibered space has one

convex filling given by the plumbing according to the graph of figure 4.9a, and others given

by a rational blow-down of the linear chain consisting of the central sphere of square −k− 2

and k − 2 spheres of square −2 from the ith arm, assuming that arm has length at least

k − 2 (equivalently ni ≥ k − 1). When e0 ≤ −k − 3 these were the only symplectic fillings,

but when e0 = −k− 2, we have additional fillings coming from the last possibility in lemma

3.3.8, assuming certain other inequalities on the ni. We recall the homological possibilities
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from lemma 3.3.8 here for easy reference:

[C0] = ℓ
[C1

1 ] = ℓ− e1 − em(1,j+1) − em(1,j+2) · · · − em(1,k) − e· − · · · − e·
...[

Cj
1

]
= ℓ− e1 − em(j,j+1) − em(j,j+2) · · · − em(j,k) − e· − · · · − e·[

Cj+1
1

]
= ℓ− e2 − em(1,j+1) − em(2,j+1) − · · · − em(j,j+1) − e· − · · · − e·
...[

Ck
1

]
= ℓ− e2 − em(1,k) − em(2,k) − · · · − em(j,k) − e· − · · · − e·[

Ck+1
1

]
= ℓ− e1 − e2

Here m(a, b) are distinct for distinct pairs (a, b), and are distinct from 1, 2. Thus the in-

equalities that must be satisfied for the ni (up to reordering the arms) for these possibilities

indexed by j are n1, · · · , nj ≥ k − j and nj+1, · · · , nk ≥ j. Note that the degenerate case

j = 0 (or symmetrically j = k) gives the homological embedding corresponding to the con-

vex plumbing and j = 1 (or symmetrically j = k − 1) gives the rational blow-down case

that appeared previously, but we get new possibilities for 1 < j < k − 1. Note that the ni

can satisfy the inequalities for some values of j but not others and the number of distinct

symplectic fillings will be affected by this.

Theorem 4.3.1. If (Y, ξpl) is the convex boundary of a symplectic plumbing according to

the graph of figure 4.9a, then every minimal symplectic filling of (Y, ξpl) is diffeomorphic

to one of the manifolds given by a Lefschetz fibration of the form shown in figure 4.11 for

some 0 ≤ j ≤ k after any permutation of the arms such that n1, · · · , nj ≥ k − j and

nj+1, · · · , nk ≥ j.

The work needed to obtain upper bounds on the number of fillings follows imme-

diately from lemma 3.3.8 and corollary 3.4.2. The ideas used in section 4.1 to construct

smooth embeddings of the spheres of the dual graph for each homological embedding via a
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(a) Embedding of dual plumbing.
(b) Complement of dual plumb-
ing upsidedown with simplified
surgery diagram.

Figure 4.10
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j k − j

n1 − k + j

n2 − k + j

nj − k + j

nj+1 − j

nj+2 − j

nk − j

Figure 4.11: Lefschetz fibrations for fillings of (Y, ξpl), ranging through 0 ≤ j ≤ k.
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handlebody diagram can be repeated for these examples. Blowing up a k+1 stranded braid

consisting of a single full positive twist as specified by the homological data gives the embed-

dings shown in figure 4.10a, and turning these embeddings upsidedown, and then simplifying

the surgery diagram yields figure 4.10b. Rotating the projection plane of the diagram by

90◦ so that we look at the diagram of figure 4.10b from the left side of the page yields the

Lefschetz fibration diagrams of figure 4.11. Therefore it suffices to show that the contact

structure induced on the boundaries of the Lefschetz fibrations of figure 4.11 is indeed ξpl.

This is implied by the following lemma when m = j and n = k − j.

Let Σ0,m+1+n denote the disk with m + 1 + n holes centered on the vertices of a

regular polygon. Let the holes be labelled counterclockwise as A1, · · ·Am, B, C1, · · · , Cn.

Let DS1,··· ,Sk
denote a positive (right-handed) Dehn twist about a curve which convexly

encloses the holes labelled S1, · · · , Sk.

Lemma 4.3.2. The following two products of positive Dehn twists are equal in the mapping

class group of Σ0,m+1+n

φm,n = DA1,··· ,Am,B,C1,··· ,Cn
Dn

A1
· · ·Dn

Am
DBD

m
C1

· · ·Dm
Cn

ψm,n = DA1,··· ,Am,B(DA1C1
· · ·DA1Cn

) · · · (DAmC1
· · ·DAmCn

)DB,C1,··· ,Cn

Proof. We will utilize the generalized lantern relation

D1,··· ,kD
k−2
1 · · ·Dk−2

k = D1,2D1,3 · · ·D1,kD2,3 · · ·D2,k · · ·Dk−2,k−1Dk−2,kDk−1,k
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which can be obtained by repeatedly applying the standard lantern relation:

D1,2,3D1D2D3 = D1,2D1,3D2,3.

Applying this relation to the factorization for φm,n, we get a new factorization (not

positive) given by

D−m+1
A1

· · ·D−m+1
Am

D−m−n+2
B D−n+1

C1
· · ·D−n+1

Cn
(DA1,A2

· · ·DA1,Am
)DA1,B(DA1,C1

, · · ·DA1,Cn
)

(DA2,A3
· · ·DA2,Am

)DA2,B(DA2,C1
, · · ·DA2,Cn

) · · · (DAm−1,Am
)DAm−1,B(DAm−1,C1

, · · ·DAm−1,Cn
)

DAm,B(DAm,C1
· · ·DAm,Cn

)(DB,C1
· · ·DB,Cn

)(DC1,C2
· · ·DC1,Cn

) · · · (DCn−2Cn−1
DCn−2,Cn

)DCn−1,Cn

On the other hand, applying the generalized lantern relation twice on the factorization

for ψm,n to split the twists DA1,··· ,Am,B andDB,C1,··· ,Cn
shows that ψm,n is equal to the product:

D−m+1
A1

· · ·D−m+1
Am

D−m+1
B (DA1,A2

· · ·DA1,Am
)DA1,B(DA2,A3

· · ·DA2,Am
)DA2,B · · · (DAm−1,Am

)DAm−1,B

DAm,B(DA1,C1
· · ·DA1,Cn

)(DA2,C1
· · ·DA2,Cn

) · · · (DAm−1,C1
· · ·DAm−1,Cn

)(DAm,C1
· · ·DAm,Cn

)

D−n+1
B D−n+1

C1
· · ·D−n+1

Cn
(DB,C1

· · ·DB,Cn
)(DC1,C2

· · ·DC1,Cn
) · · · (DCn−2,Cn−1

DCn−2,Cn
)DCn−1,Cn

Comparing these two factorizations, we see that they differ only by commuting

Dehn twists about curves which are disjoint. Specifically, all the twists about boundary

parallel curves commute with anything, and the products of the form (DAi,C1
· · ·DAi,Cn

)

commute with Dehn twists about curves convexly enclosing any collection of the holes

{Ai+1, · · · , Am, B}.
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Figure 4.12: Graphs and dual graphs for a family where e0 = −k − 1.

4.4 Classifications when e0 = −k − 1 and k ≤ 6

Now we consider examples where e0 = −k − 1 where k is the number of arms and

the spheres in the arms all have square −2 as in figure 4.12a. In this case, unless k ≤ 6,

we cannot ensure we have produced complete classifications using corollary 3.4.2. When

k = 3, this case was covered in section 4.1. Therefore, in this section we provide complete

classifications for this family when k = 4, 5, 6, yielding some new examples of fillings.

The dual graphs for this family of examples have the form shown in figure 4.12b,

namely the arms all have length one with a single sphere of square −nj ≤ −2. Therefore

the possible homological embeddings are dictated by lemma 3.3.3. When k ≤ 6, there is a

unique diffeomorphism class of minimal symplectic fillings for each homological embedding

of the dual graph. The homology class of C0 is always ℓ, so it suffices to specify the homology

classes of Cj
1 for j ∈ {1, · · · , k}.

Note that if the nj are not sufficiently large, it may not be possible to realize all

possible homology configurations. It suffices to assume nj ≥ k − 2 for all j ∈ {1, · · · , k}

to homologically obtain all possible combinations allowed by lemma 3.3.3, but for k > 6

the homological possibilities may not be realizable by J-holomorphic configurations of J-
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complex lines. When the nj are not all at least k − 2, there are fewer possible fillings and

the classification can be easily deduced by studying the homological possibilities which are

allowed by the given nj .

A symplectic embedding of the dual graph spheres representing the homology classes

specified by Ek
n will reduce after blowing-down to a configuration of projective lines with

intersection data specified by Ik
n shown in figures 4.13 and 4.17. Each of the homological

embeddings can be realized as smooth and symplectic embeddings visible in the Kirby dia-

grams of figures 4.14, 4.15, 4.16, 4.18, 4.19, and 4.20. By cutting out the spheres of the dual

graphs in each of these embeddings, we obtain manifolds with a Lefschetz fibration structure

in the same way this occurred in the simple examples of section 4.1.

When k = 4, there are three distinct possibilities up to reordering the arms and

relabeling the exceptional classes.

E4
1 E4

2

[C1
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e2 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e3 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e4 − e· − · · · − e·

[C4
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e2 − e3 − e4 − e· − · · · − e·

E4
3

[C1
1 ] = ℓ− e1 − e2 − e3 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e4 − e5 − e· − · · · − e·

[C3
1 ] = ℓ− e2 − e4 − e6 − e· − · · · − e·

[C4
1 ] = ℓ− e3 − e5 − e6 − e· − · · · − e·

The Lefschetz fibrations obtained by cutting out these embedded dual spheres for

the k = 4 case have fibers which are four holed disks. We will label the holes counter-

clockwise by 1, 2, 3, 4. The ordered vanishing cycles correspond to a positive factorization
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(a) I4

1
(b) I4

2
(c) I4
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(d) I5

1
(e) I5

2
(f) I5

3

(g) I5

4
(h) I5

5

Figure 4.13: Each configuration Ik
n represents k+1 complex projective lines C0, C1, · · · , Ck.

C0 always intersects each of the other lines in a distinct double point. The diagrams repre-
sent how other intersections can coincide at multi-intersection points corresponding to the
blow-downs of the homological embedding of the dual graph described by Ek

n . The possible
configurations for k = 4, 5 are shown here.
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(a) +1, +1, +1, +1,
+1

(b) E4
1 : +1, −n1,

−n2, −n3, −n4, −1
(c) E4

2 : +1, −n1,
−n2, −n3, −n4, −1

(d) E4
3 : +1, −n1,

−n2, −n3, −n4, −1

Figure 4.14: After closing up each braid, each figure shows the attaching circles for the 2-
handles of handlebody diagrams with four 3-handles and a single 4-handle. The framings are
specified below each diagram with color coordination. The left-most figure is a diagram for
CP2, and the others are blow-ups of CP2 in which the dual sphere embeddings are exhibited.
The equators of the exceptional spheres are shown in black, and the number of these circles
which link a single colored circle is determined by the framings: a total of nj+1 black circles
link the colored circle with framing −nj .
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of the monodromy for the standard open book supporting the canonical contact structure.

In each case the complement of the embedding Ek
1 is the Lefschetz fibration on the convex

plumbing described by Gay and Mark’s theorem 2.4.1. The factorizations for the Lefschetz

fibrations corresponding to the fillings appearing as the complements of all the embeddings

are specified below.

E4
1 Dn1

1 D
n2

2 D
n3

3 D
n4

4 D1,2,3,4

E4
2 Dn1−1

1 Dn2−1
2 Dn3−1

3 Dn4−2
4 D1,2,3D1,4D2,4D3,4

E4
3 Dn1−2

1 Dn2−2
2 Dn3−2

3 Dn4−2
4 D1,2D1,3D1,4D2,3D2,4D3,4

It is not hard to show that these factorizations are all equal in the mapping class

group. The second factorization is related to the first by a daisy relation, and the third is

related to the second by a lantern relation (along with some commutation of Dehn twists

about disjoint curves).

When k = 5, there are five distinct possibilities up to reordering the arms and excep-

tional classes.

E5
1 E5

2

[C1
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e2 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e3 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e4 − e· − · · · − e·

[C4
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e5 − e· − · · · − e·

[C5
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e2 − e3 − e4 − e5 − e· − · · · − e·

E5
3

[C1
1 ] = ℓ− e1 − e3 − e4 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e5 − e6 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e2 − e· − · · · − e·

[C4
1 ] = ℓ− e2 − e3 − e5 − e· − · · · − e·

[C5
1 ] = ℓ− e2 − e4 − e6 − e· − · · · − e·
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E5
4 E5

5

[C1
1 ] = ℓ− e1 − e2 − e5 − e· − · · · − e· ℓ− e1 − e2 − e3 − e4 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e3 − e6 − e· − · · · − e· ℓ− e1 − e5 − e6 − e7 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e4 − e7 − e· − · · · − e· ℓ− e2 − e5 − e8 − e9 − e· − · · · − e·

[C4
1 ] = ℓ− e2 − e3 − e4 − e8 − e· − · · · − e· ℓ− e3 − e6 − e8 − e10 − e· − · · · − e·

[C5
1 ] = ℓ− e5 − e6 − e7 − e8 − e· − · · · − e· ℓ− e4 − e7 − e9 − e10 − e· − · · · − e·

The Lefschetz fibrations obtained by cutting out these embedded dual spheres for

the k = 5 case have fibers which are five holed disks, with holes labeled counter-clockwise

1, 2, 3, 4, 5. The factorizations for the Lefschetz fibrations are:

E5
1 Dn1

1 D
n2

2 D
n3

3 D
n4

4 D
n5

5 D1,2,3,4,5

E5
2 Dn1−1

1 Dn2−1
2 Dn3−1

3 Dn4−1
4 Dn5−3

5 D1,2,3,4D1,5D2,5D3,5D4,5

E5
3 Dn1−2

1 Dn2−2
2 Dn3−1

3 Dn4−2
4 Dn5−2

5 D1,2,3D1,4D1,5D2,4D2,5D3,4,5

E5
4 Dn1−2

1 Dn2−2
2 Dn3−2

3 Dn4−3
4 Dn5−3

5 D1,2,3D1,4D1,5D2,4D2,5D3,4D3,5D4,5

E5
5 Dn1−3

1 Dn2−3
2 Dn3−3

3 Dn4−3
4 Dn5−3

5 D1,2D1,3D1,4D1,5D2,3D2,4D2,5D3,4D3,5D4,5

These factorizations are all equal in the mapping class group. The second factorization

is related to the first by a daisy relation with four petals, the fourth is related to the second

by a daisy relation with three petals, and the fifth is related to the fourth by a lantern

relation. The third is related to the fourth by a lantern relation.

When k = 6, there are nine distinct possibilities up to reordering the arms and
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(a) +1, +1, +1, +1,
+1, +1

(b) E5

1 : +1, −n1,
−n2, −n3, −n4,
−n5, −1

(c) E5

2 : +1, −n1,
−n2, −n3, −n4, −1

Figure 4.15: After closing up each braid, each figure shows the attaching circles for the
2-handles of handlebody diagrams with five 3-handles and a single 4-handle. The left-most
figure is a diagram for CP2, and the others are blow-ups of CP2 in which the dual sphere
embeddings are exhibited.
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(a) E5

3 : +1, −n1,
−n2, −n3, −n4,
−n5, −1

(b) E5

4 : +1, −n1,
−n2, −n3, −n4,
−n5, −1

(c) E5

5 : +1, −n1,
−n2, −n3, −n4,
−n5, −1

Figure 4.16: After closing up each braid, each figure shows the attaching circles for the
2-handles of handlebody diagrams with five 3-handles and a single 4-handle. The left-most
figure is a diagram for CP2, and the others are blow-ups of CP2 in which the dual sphere
embeddings are exhibited.
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(a) I6

1
(b) I6

2
(c) I6

3

(d) I6
4 (e) I6

5 (f) I6
6

(g) I6
7 (h) I6

8 (i) I6
9

Figure 4.17: Each configuration Ik
n represents k+1 complex projective lines C0, C1, · · · , Ck.

C0 always intersects each of the other lines in a distinct double point. The diagrams repre-
sent how other intersections can coincide at multi-intersection points corresponding to the
blow-downs of the homological embedding of the dual graph described by Ek

n . The possible
configurations for k = 6 are shown here.
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exceptional classes.

E6
1 E6

2

[C1
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e2 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e3 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e4 − e· − · · · − e·

[C4
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e5 − e· − · · · − e·

[C5
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e1 − e6 − e· − · · · − e·

[C6
1 ] = ℓ− e1 − e· − · · · − e· ℓ− e2 − e3 − e4 − e5 − e6 − e· − · · · − e·

E6
3 E6

4

[C1
1 ] = ℓ− e1 − e3 − e4 − e· − · · · − e· h− e1 − e2 − e3 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e5 − e6 − e· − · · · − e· h− e1 − e4 − e5 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e7 − e8 − e· − · · · − e· h− e1 − e6 − e7 − e· − · · · − e·

[C4
1 ] = ℓ− e1 − e2 − e· − · · · − e· h− e1 − e8 − e9 − e· − · · · − e·

[C5
1 ] = ℓ− e2 − e3 − e5 − e7 − e· − · · · − e· h− e2 − e4 − e6 − e8 − e· − · · · − e·

[C6
1 ] = ℓ− e2 − e4 − e6 − e8 − e· − · · · − e· h− e3 − e5 − e7 − e9 − e· − · · · − e·

E6
5 E6

6

[C1
1 ] = ℓ− e1 − e3 − e5 − e· − · · · − e· h− e1 − e3 − e4 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e4 − e6 − e· − · · · − e· h− e1 − e5 − e6 − e7 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e2 − e7 − e· − · · · − e· h− e1 − e2 − e8 − e· − · · · − e·

[C4
1 ] = ℓ− e2 − e4 − e5 − e· − · · · − e· h− e2 − e4 − e5 − e9 − e· − · · · − e·

[C5
1 ] = ℓ− e2 − e3 − e6 − e· − · · · − e· h− e2 − e3 − e6 − e· − · · · − e·

[C6
1 ] = ℓ− e3 − e4 − e7 − e· − · · · − e· h− e3 − e7 − e8 − e9 − e· − · · · − e·

E6
7

[C1
1 ] = ℓ− e1 − e2 − e3 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e4 − e5 − e6 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e7 − e8 − e9 − e· − · · · − e·

[C4
1 ] = ℓ− e3 − e4 − e7 − e10 − e11 − e· − · · · − e·

[C5
1 ] = ℓ− e2 − e5 − e8 − e10 − e· − · · · − e·

[C6
1 ] = ℓ− e2 − e6 − e9 − e11 − e· − · · · − e·
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E6
8

[C1
1 ] = h− e1 − e2 − e3 − e4 − e· − · · · − e·

[C2
1 ] = h− e1 − e5 − e6 − e7 − e· − · · · − e·

[C3
1 ] = h− e1 − e8 − e9 − e10 − e· − · · · − e·

[C4
1 ] = h− e2 − e5 − e8 − e11 − e12 − e· − · · · − e·

[C5
1 ] = h− e3 − e6 − e9 − e11 − e13 − e· − · · · − e·

[C6
1 ] = h− e4 − e7 − e10 − e12 − e13 − e· − · · · − e·

E6
9

[C1
1 ] = h− e1 − e2 − e3 − e4 − e5 − e· − · · · − e·

[C2
1 ] = h− e1 − e6 − e7 − e8 − e9 − e· − · · · − e·

[C3
1 ] = h− e2 − e6 − e10 − e11 − e12 − e· − · · · − e·

[C4
1 ] = h− e3 − e7 − e10 − e13 − e14 − e· − · · · − e·

[C5
1 ] = h− e4 − e8 − e11 − e13 − e15 − e· − · · · − e·

[C6
1 ] = h− e5 − e9 − e12 − e14 − e15 − e· − · · · − e·

The Lefschetz fibrations obtained by cutting out these embedded dual spheres for

the k = 6 case have fibers which are six holed disks, with holes labeled counter-clockwise

1, 2, 3, 4, 5, 6. The factorizations for the Lefschetz fibrations are found from the embeddings

as was done in the simple case of section 4.1. The most complicated case is for the embedding

E6
5 and given Lefschetz fibration on the complement of the shown embedding is produced

explicitly in section 6.2.
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(a) E6

1
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

(b) E6

2
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

(c) E6

3
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

Figure 4.18: After closing up each braid, each figure shows the attaching circles for the
2-handles of handlebody diagrams with six 3-handles and a single 4-handle. The left-most
figure is a diagram for CP2, and the others are blow-ups of CP2 in which the dual sphere
embeddings are exhibited.
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(a) E6

4
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

(b) E6

5
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

(c) E6

6
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

Figure 4.19: After closing up each braid, each figure shows the attaching circles for the
2-handles of handlebody diagrams with six 3-handles and a single 4-handle. The left-most
figure is a diagram for CP2, and the others are blow-ups of CP2 in which the dual sphere
embeddings are exhibited.
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(a) E6

7
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

(b) E6

8
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

(c) E6

9
: +1, −n1,

−n2, −n3, −n4,
−n5, −n6, −1

Figure 4.20: After closing up each braid, each figure shows the attaching circles for the
2-handles of handlebody diagrams with six 3-handles and a single 4-handle. The left-most
figure is a diagram for CP2, and the others are blow-ups of CP2 in which the dual sphere
embeddings are exhibited.
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E6
1 Dn1

1 D
n2

2 D
n3

3 D
n4

4 D
n5

5 D
n6

6 D1,2,3,4,5,6

E6
2 Dn1−1

1 Dn2−1
2 Dn3−1

3 Dn4−1
4 Dn5−1

5 Dn6−4
6 D1,2,3,4,5D1,6D2,6D3,6D4,6D5,6

E6
3 Dn1−2

1 Dn2−2
2 Dn3−2

3 Dn4−1
4 Dn5−3

5 Dn6−3
6 D1,2,3,4D1,5D1,6D2,5D2,6D3,5D3,6D4,5,6

E6
4 Dn1−2

1 Dn2−2
2 Dn3−2

3 Dn4−2
4 Dn5−4

5 Dn6−4
6 D1,2,3,4D1,5D1,6D2,5D2,6D3,5D3,6D4,5D4,6D5,6

E6
5 Dn1−2

1 Dn2−2
2 Dn3−2

3 Dn4−2
4 Dn5−2

5 Dn6−2
6 D1,2,3D1,4D1,5,6(D

−1
5,6D2,4,6D5,6)D2,5

(D−1
4,5,6D3,6D4,5,6)D3,4,5

E6
6 Dn1−2

1 Dn2−3
2 Dn3−2

3 Dn4−3
4 Dn5−2

5 Dn6−3
6 D1,2,3D1,4D1,5,6(D

−1
5,6D2,4D2,6D4,6D5,6)

D2,5(D
−1
4,5,6D3,6D4,5,6)D3,4,5

E6
7 Dn1−2

1 Dn2−3
2 Dn3−3

3 Dn4−4
4 Dn5−3

5 Dn6−3
6 D1,2,3D1,4D1,5,6(D

−1
5,6D2,4D2,6D4,6D5,6)

D2,5(D
−1
4,5,6D3,6D4,5,6)D3,4D3,5D4,5

E6
8 Dn1−3

1 Dn2−3
2 Dn3−3

3 Dn4−4
4 Dn5−4

5 Dn6−4
6

D1,2,3D1,4D1,5D1,6D2,4D2,5D2,6D3,4D3,5D3,6D4,5D4,6D5,6

E6
9 Dn1−4

1 Dn2−4
2 Dn3−4

3 Dn4−4
4 Dn5−4

5 Dn6−4
6

D1,2D1,3D1,4D1,5D1,6D2,3D2,4D2,5D2,6D3,4D3,5D3,6D4,5D4,6D5,6

These factorizations are all equal in the mapping class group. The second factorization

is related to the first by a daisy relation (equation 2.3.2) with five petals, the fourth is related

to the second by a daisy relation with four petals, the eighth is related to the fourth by a three

petal daisy relation, and the ninth is related to the eighth by a lantern relation (equation

2.3.1). The fifth is related to the ninth by the following lemma, and the sixth and seventh

are related to the fifth by lantern relations.

Lemma 4.4.1. The following two elements are equal in the mapping class group of the disk
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with six holes:

φ = D1,2D1,3D1,4D1,5D1,6D2,3D2,4D2,5D2,6D3,4D3,5D3,6D4,5D4,6D5,6

and

ψ = D2
1D

2
2D

2
3D

2
4D

2
5D

2
6D1,2,3D1,4D1,5,6(D

−1
5,6D2,4,6D5,6)D2,5(D

−1
4,5,6D3,6D4,5,6)D3,4,5

Proof. Starting with ψ, use the lantern relation and the boundary parallel curves to split

all of the Dehn twists about curves containing three holes into Dehn twists about curves

containing two holes.

D1,2D1,3D2,3D1,4D1,5D1,6D5,6D
−1
5,6D2,4D2,6D4,6D5,6D2,5D

−1
5,6D

−1
4,6D

−1
4,5D3,6D4,5D4,6D5,6

·D3,4D3,5D4,5

By the conjugation relation, D5,6D2,5D
−1
5,6 is a positive Dehn twist about the image of the

curve convexly containing 2 and 5 under a negative Dehn twist about D5,6, and this image

is disjoint from the curve convexly containing 4 and 6 so D5,6D2,5D
−1
5,6 commutes with D4,6.

Also D4,5 and D3,6 commute. Performing these commutations and cancelling inverse pairs

we get the following.

D1,2D1,3D2,3D1,4D1,5D1,6D2,4D2,6D5,6D2,5D
−1
5,6D3,6D4,6D5,6D3,4D3,5D4,5

Commuting Dehn twists about disjoint curves, and cyclically permuting lantern relation

triples we can simplify this to

D1,2D1,3D1,4D1,5D1,6D2,3D2,4D2,5D2,6D3,6D4,6D5,6D4,5D3,4D3,5
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A final cyclic permutation of a lantern triple gives

D1,2D1,3D1,4D1,5D1,6D2,3D2,4D2,5D2,6D3,6D4,5D4,6D5,6D3,4D3,5

The last six Dehn twists form a generalized lantern product (the right hand side of equation

2.3.3) and can thus be cyclically permuted to give φ.

Remark 4.4.2. When all of the nj are at least k − 2, these factorizations are all positive,

and are all related through sequences of lantern or daisy relations which pass through only

positive factorizations. However, when some of the nj are less than k − 2 then some of

the above factorizations will not be positive. In such a situation, it is possible that the

remaining positive factorizations could be related only through sequences of lantern and

daisy relations which necessarily pass through non-positive factorizations. The fillings which

always come from sequences of Fintushel-Stern rational blow-downs of the plumbing include

E4
2 , E

4
3 , E

5
2 , E

5
4 , E

5
5 , E

6
2 , E

6
4 , E

6
8 , and E6

9 . Fillings corresponding to monodromy substitutions given

by the relations arising in section 4.3 include E5
3 and E6

3 . The filling E6
5 is the most interesting

of the examples in this section because when nj = 2 for all j ∈ {1, · · · , 6}, this is the only

filling other than the plumbing. This implies that when all nj = 2, any sequence of lantern

or daisy relations between the factorizations corresponding to E6
1 and that for E6

5 must pass

through negative factorizations.

4.5 A family whose dual graphs have long arms

In the examples we have considered, the dual graphs all have arms consisting of

a single vertex. Another restrictive condition on the possibilities for homology is to re-

quire that the spheres of the dual plumbing have small self-intersection numbers. If we
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−n1

−n2

−n3
−4

(a) Graphs

n1 − 1

n2 − 1

n3 − 1

−2 −2 −2

−2

−2

−2 +1

(b) Dual graphs

Figure 4.21: Another simple family of graphs and their dual graphs (n1, n2, n3 ≥ 1).

look at three-armed dual graphs where every sphere except the central vertex has self-

intersection number −2 as in figure 4.21b, we can understand fillings of Seifert fibered spaces

Y (−4;−n1,−n2,−n3) that bound plumbings according to the graphs in figure 4.21a. Note

that when n1 = n2 = n3 = 2, we are back in example 1. Therefore we can assume at least

one of the arms in the dual graph has length at least 2.

Theorem 4.5.1. If (Y, ξpl) is the boundary of a dually positive plumbing of spheres, where the

star-shaped graph has exactly three arms, the central vertex has self-intersection coefficient

−4, and each arm has length one, and each sphere in each arm has self-intersection coefficient

strictly less than −4 then (Y, ξpl) has exactly two minimal strong symplectic fillings up to

diffeomorphism, given by the original symplectic plumbing and the manifold obtained by

rationally blowing down the central −4 sphere.

Proof. We consider what each sphere in the dual graph can represent in H2(XM ;Z). The

central vertex, and its adjacent vertices must represent one of two possible homology choices,
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as in section 4.1.

Case A Case B
[C0] = ℓ [C0] = ℓ
[C1

1 ] = ℓ− e1 − e2 − e3 [C1
1 ] = ℓ− e1 − e2 − e4

[C2
1 ] = ℓ− e1 − e4 − e5 [C2

1 ] = ℓ− e1 − e3 − e5
[C3

1 ] = ℓ− e1 − e6 − e7 [C3
1 ] = ℓ− e2 − e3 − e6

The remaining spheres in the concave cap have the form ei1 − ei2 . By lemma 3.3.4,

the exceptional class in [Cj
2 ] with coefficient 1 has coefficient −1 in [Cj

1 ]. Therefore in case

A, up to relabelling, [C1
2 ] = e2 − e8 (if e1 appeared in [C1

2 ] it would be impossible to cancel

the algebraic intersection of C4 with both C2 and C3 since only two ei’s can appear with

nonzero coefficient in [C1
2 ]). By lemmas 3.3.5 and 3.3.7 which are simple consequences of the

intersection relations, [C1
3 ] = e8 − e9 or [C1

3 ] = e3 − e2. However if there is another sphere

C1
4 adjacent to C1

3 then we cannot have [C1
3 ] = e3 − e2, because there is no way to write

[C1
4 ] = ei1 − ei2 such that [C1

4 ] · (e3 − e2) = 1, [C1
4 ] · [C

1
1 ] = 0, and [C1

4 ] · [C
2
1 ] = 0. The

homology of the spheres in the other arms is determined independently in the same way.

Therefore if we are in case A, and each arm in the dual graph has length at least four (i.e.

n1, n2, n3 > 4), the homology of the spheres is unique up to relabeling the ei.

If the first four spheres are configured as in case B, then lemma 3.3.4 implies [C1
2 ] =

e4 − e7 or [C1
2 ] = e1 − e5 (up to symmetric relabeling). If we have another sphere C1

3

adjacent to C1
2 , then we cannot have [C1

2 ] = e1− e5. This is because it is not possible to find

[C1
3 ] = ei1 − ei2 such that [C1

3 ] · (e1 − e5) = 1, [C1
3 ] · [C

1
1 ] = 0, and [C1

3 ] · [C
2
1 ] = 0. Therefore

if C1
3 is adjacent to C1

2 , [C
1
2 ] = e4 − e7. Furthermore [C1

3 ] = e7 − e8, since if [C1
3 ] = ei − e4

it is not possible to ensure [C1
3 ] · [C

1
1 ] = 0 and [C1

3 ] · [C
2
1 ] = [C1

3 ] · [C
3
1 ] = 0 simultaneously.

In conclusion, if then lengths of all of the arms in the dual graph is at least three, (i.e.

100



n1, n2, n3 > 3), the homology of all of the spheres are determined, up to obvious symmetries,

by the choice that the first four spheres are as in case B.

This implies that when n1, n2, n3 > 4, there are at most two diffeomorphism types of

strong symplectic fillings of the Seifert fibered space arising as the boundary of the plumbing

in figure 4.21a. It is clear from the previous analysis in section 4.1 that the diffeomorphism

types obtained from case A and case B differ by a rational blow-down of the central −4

sphere. Furthermore, we know that the original symplectic plumbing and the rational blow-

down of the −4 sphere provide two non-diffeomorphic symplectic fillings.

When some of n1, n2, and n3 take values 3 or 4, some more interesting fillings can

appear as similar homological analysis shows. The most interesting case is when n1 = n2 =

n3 = 3, which will be the first Seifert fibered space in the family discussed in the next section.

When some of the nj = 4, one can perform rational blow-downs of any disjoint collection of

−4 spheres. If only one or two of the nj = 3, nothing new appears.

4.6 The family Wp,q,r

There is a family of dually positive symplectic plumbings of spheres that can be

completely rationally blown down, given by the graphs in figure 4.22a. This is the only

family of dually positive graphs which has a symplectic rational blowdown (of the entire

configuration) due to the classifications in [BS11] and [SSW08].

We can classify the convex symplectic fillings completely for these graphs. Let

Y (Wp,q,r) denote the boundary of the plumbing of spheres according to the graph Wp,q,r.
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Figure 4.22: Wp,q,r and dual graphs.

Theorem 4.6.1. The convex symplectic fillings of (Y (Wp,q,r), ξpl) are of the following dif-

feomorphism types:

1. The original symplectic plumbing of spheres according to the graph Wp,q,r.

2. A rational blow-down of the central −4 sphere in the original plumbing of spheres.

3. A rational blow-down of a subset of the spheres in the first arm, the first with square

−p− 3 and the next (p− 1) spheres with square −2, ( assuming p− 1 ≤ q).

4. A rational blow-down of a subset of the spheres in the second arm, the first with square

−r − 3 and the next (r − 1) spheres with square −2, ( assuming r − 1 ≤ p).

5. A rational blow-down of a subset of the spheres in the third arm, the first with square

−q − 3 and the next (q − 1) spheres with square −2, ( assuming q − 1 ≤ r).

6. Any combination of (3),(4), and/or (5) assuming all the necessary hypotheses given

above on p, q, r are met. Also, any combination of (3),(4), and (5) with (2), but in

that case we require the stronger conditions on (3),(4), and (5) that p ≤ q, r ≤ p and

q ≤ r respectively (this ensures the rational blow-downs can all be done disjointly).
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7. A rational blow-down of the entire graph.

Proof. First note that all the above diffeomorphism types are realized as convex symplectic

fillings of ξpl because these rational blow-downs are known to be symplectic operations by

[Sym98], [SSW08]. Furthermore, all of these rational blow-downs produce non-diffeomorphic

manifolds which can be distinguished by their intersection forms (except when there are

obvious symmetries of the three arms). Therefore it suffices to provide an upper bound on

the number of convex fillings which matches the number of diffeomorphism types provided

in the statement of the theorem.

By corollary 3.4.2, an upper bound is given by the number of ways to represent

the homology classes of the spheres in the dual graph in terms of a standard basis for

H2(CP
2 #M CP2) of the form given in section 3.3. The dual graph for Wp,q,r is given in

figure 4.22b.

We use our standard notation that C0 is the central sphere, and Cj
i is the sphere in

the jth arm of distance i from the center. There are two possibilities for the homology classes

of the four central-most spheres, as in previous computations. Throughout this computation,

all eni will be distinct basis elements for H2(CP
2#M CP2;Z) of square −1.

Case A Case B
[C0] = ℓ [C0] = ℓ

[C1
1 ] = ℓ− e01 − e11 − · · · − e1q+2 [C1

1 ] = ℓ− e01 − e02 − e11 − · · · − e1q+1

[C2
1 ] = ℓ− e01 − e21 − · · · − e2p+2 [C2

1 ] = ℓ− e01 − e03 − e21 − · · · − e2p+1

[C3
1 ] = ℓ− e01 − e31 − · · · − e3r+2 [C3

1 ] = ℓ− e02 − e03 − e31 − · · · − e3r+1

The remaining strings of spheres each have two possible configurations that can occur in

either case A or B. They can each occur independently of each other, but one of each of
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these two choices requires some inequality between p, q, r to be true. The configurations are:

[C1
2 ] = e11 − e41 [C2

2 ] = e21 − e51 [C3
2 ] = e31 − e61

[C1
3 ] = e41 − e42 [C2

3 ] = e51 − e52 [C3
3 ] = e61 − e62

...
...

...[
C1

p+2

]
= e4p − e4p+1

[
C2

r+2

]
= e5r − e5r+1

[
C3

q+2

]
= e6q − e6q+1

or or or
[C1

2 ] = e11 − e41 [C2
2 ] = e21 − e51 [C3

2 ] = e31 − e61

[C1
3 ] = e12 − e11 [C2

3 ] = e22 − e21 [C3
3 ] = e32 − e31

...
...

...[
C1

p+2

]
= e1p+1 − e1p

[
C2

r+2

]
= e2r+1 − e2r

[
C3

q+2

]
= e3q+1 − e3q .

Note that the bottom choices are only possible if there are enough eni for n = 1, 2, 3, namely

we need p + 1 ≤ q + 2, r + 1 ≤ p+ 2, or q + 1 ≤ r + 2 if we want the bottom choice for the

homology classes of {C1
i }, {C

2
i } or {C3

i } respectively, and the first four spheres represent the

homology given by case A. We need p+1 ≤ q+1, r+1 ≤ p+1, or q+1 ≤ r+1 if we want

the bottom choice for the homology classes of {C1
i }, {C

2
i } or {C3

i } respectively, and the first

four spheres represent the homology given by case B.

As in previous examples, the effect of choosing the first four spheres to represent the

homology in case B versus case A is to rationally blow-down the central −4 sphere. The

conditions for when one can choose the lower representation of the homology of the jth arm

of the dual graph match up precisely with the conditions for when one can rationally blow

down a linear subgraph of the jth arm in the original graph in case A. In case B, these

conditions on when we have a second choice for the homology of the jth arm of the dual

graph match the conditions needed to rationally blow down a linear subgraph of the jth arm

disjointly from the central −4 sphere.

Additionally, the symmetries which make the rational blow-down of one arm diffeo-
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morphic to the rational blow-down of another arm, correspond to symmetries in the eji which

permute the values of j.

There is one additional way to represent the homology of the arms in the dual graphs,

when the first four spheres represent homology given by case B. We know that [Cj
2 ] =

em1

i1
− em2

i2
where em1

i1
must show up with coefficient −1 in [Cj

1 ]. In case A, we cannot have

em1

i1
= e01 and still have [Cj

2 ] · [C
j′

1 ] = 0 for j 6= j′ ∈ {1, 2, 3}. However, in case B, this can

occur but it uniquely determines the remaining homology classes as follows.

[C1
2 ] = e01 − e21 [C2

2 ] = e03 − e31 [C3
2 ] = e02 − e11

[C1
3 ] = e21 − e22 [C2

3 ] = e31 − e32 [C3
3 ] = e11 − e12

...
...

...[
C1

p+2

]
= e2p − e2p+1

[
C2

r+2

]
= e3r − e3r+1

[
C3

q+2

]
= e1q − e1q+1

This gives an embedding of the dual configuration of symplectic spheres into CP2#(p+ q+

r + 6)CP2. Note that the dual graph has p + q + r + 7 vertices, so a regular neighborhood

P of the corresponding configuration of spheres has b2(P ) = p + q + r + 7 = b2(CP
2#(p +

q + r + 6)CP2). The first and second homology of ∂ P = Y (Wp,q,r) are both torsion, and

P and CP2 #(p + q + r + 6)CP2 are simply connected, so their first homologies are zero.

Therefore, the Mayer-Vietoris theorem implies that the first and second homologies of the

complement of P in this embedding are both torsion. Therefore this is the diffeomorphism

type of a rational homology ball. Since this is the unique possible rational homology ball

which can strongly symplectically fill its contact boundary, it must be diffeomorphic to the

smoothing of the normal surface singularity studied in [SSW08].

Therefore the number of ways to represent the homology of the spheres in the dual

graph is in direct correspondence with the diffeomorphism types we can realize by starting
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Figure 4.23: The embedding of the concave cap and its complement which is a rational
homology ball for W3,3,3.

with the original symplectic plumbing, and rationally blowing down a subgraph or the entire

graph, so these are all possible convex symplectic fillings of (Y, ξpl).

The explicit handlebody diagrams constructed as in section 4.1 for the embedding of

the dual graph corresponding to the last case of the theorem and the complement of this

embedding are shown in figure 4.23 for the case W3,3,3.
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Chapter 5

Comparing to rational blow-down

The rational blow-down operation was first defined by Fintushel and Stern in [FS97],

and was subsequently generalized by Park in [Par97] and by Stipsicz, Szabó, and Wahl in

[SSW08]. The operations considered by Fintushel and Stern are defined by cutting out a

neighborhood of embedded 2-spheres in a 4-manifold which intersect according to a plumbing

graph as in figure 5.1 and gluing in a certain rational homology ball with the same boundary:

L(p2, p−1). Fintushel and Stern calculated the effect of this operation on the Seiberg-Witten

invariants of the manifold, and Park used this operation to produce the first example of an

exotic copy of CP2#7CP2 in [Par05]. Although the original operation was defined in the

smooth category, the phenomena observed with the Seiberg-Witten invariants suggested that

this operation may be done symplectically. This was proven by Symington in [Sym98] in

the case that the 2-spheres are symplectic, by showing that both the neighborhood of the 2-

spheres and the rational homology ball have convex symplectic boundary inducing the same

contact structures. All of these results were extended to a generalized family where the

plumbing of spheres and the rational ball both have boundary L(p2, pq − 1). For these lens

-p-2 -2 -2 -2

p-2

Figure 5.1: The plumbing graph for the Fintushel and Stern rational blow-down.
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space boundary cases, the 2-spheres intersect according to a linear graph, but more general

negative definite plumbings can be symplectically cut out and replaced by symplectic rational

homology balls. A list of all such graphs was proposed in [SSW08] and eventually proven

to be a complete list (see [BS11, GS07, PSS13]). Similar operations can be defined using

convex symplectic fillings of Seifert fibered spaces with the canonical contact structure, in

the sense that we can cut out a symplectic plumbing of spheres and glue in an alternate

symplectic filling. The examples of Stipsicz, Szabó, and Wahl are a special case of this, but

in greater generality, the symplectic filling being glued in need not be a rational homology

ball. Because the plumbings being cut out and replaced with Seifert-fibered boundary are

plumbed according to star-shaped graphs, these more general cut and paste operations were

called star surgery in [KS]. Star surgery was shown to be effective at producing exotic copies

of CP2#N CP2 for N = 6, 7, 8 in [KS].

There are two important properties of the rational blow-down which make them

effective operations for producing small exotic 4-manifolds.

1. Rational blow-down operations decrease the Euler characteristic of the 4-manifold by

killing off generators of second homology.

2. The Seiberg-Witten (or Donaldson) invariants of the rationally blown-down manifold

can be calculated in terms of the Seiberg-Witten (or Donaldson) invariants of the

original manifold along with some homological computations.

Michalogiorgaki [Mic07] proved a theorem which implies that property (2) holds more

generally for any star surgery operation which removes a dually positive star-shaped plumb-

ing of spheres. In the first part of this chapter we will prove that property (1) also holds for
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all dually positive star surgeries. In other words, the dually positive plumbing of spheres has

the largest Euler characteristic amongst all symplectic fillings of the Seifert fibered boundary

with the canonical contact structure. In the second part of this chapter, we will show that

star surgery operations are strictly more general than sequences of rational blow-downs.

5.1 Euler characteristic upper bounds

The main goal of this section is to prove the following theorem.

Theorem 5.1.1. Let Γ be a dually-positive star-shaped graph. Let X be the correspond-

ing symplectic plumbing of spheres with convex boundary inducing the canonical contact

structure, and let (Y, ξ) = ∂(X,ω). Then the Euler characteristic of any minimal convex

symplectic filling of (Y, ξ) is bounded above by the Euler characteristic of X.

The Euler characteristic is additive under gluing two pieces along their odd dimen-

sional boundaries. Therefore, if a symplectic filling appears as the complement of an em-

bedding of the dual plumbing into CP2#N CP2, its the Euler characteristic is 2 +N − |Γ′|.

Here |Γ′| indicates the number of vertices in the dual graph. Assuming the filling is minimal,

by lemma 3.4.4, all N exceptional homology classes appear with non-zero coefficient in at

least one of the homology classes of the dual graph spheres. The homology classes of the

embedded dual graph spheres, written in terms of the standard basis for H2(CP
2 #N CP2),

are restricted by the lemmas of section 3.3. With all of these restrictions on the homol-

ogy embeddings, the different possibilities for the Euler characteristics of the corresponding

fillings are determined by the varying ways that exceptional classes appear with non-zero

coefficients in the homology classes of distinct spheres.
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Note that the subtle additional hypotheses from section 3.4 needed to obtain complete

classifications are not needed for this theorem, because the Euler characteristic is determined

simply by the homological embedding data.

Proof of theorem 5.1.1. To understand fillings of (M, ξcan) we want to understand symplectic

embeddings of the dual plumbing into CP2#N CP2. The dual graph construction of section

3.1 provides one such embedding, where the complement is the original plumbing. The

homological embedding corresponding to this embedding can be easily computed.

The spheres adjacent to the central +1 sphere represent the class h−e1−ei1−· · ·−ein .

They all share e1 with coefficient −1, but the other ex’s that appear with nonzero coefficient

are all distinct. After blowing up enough times, the most recently introduced exceptional

sphere in each singular fiber becomes the next sphere in the arm of the dual graph (instead of

becoming part of the corresponding arm in the plumbing graph). Then we blow up at points

at its intersection with the subsequent sphere until its proper transform has the necessary

self-intersection number, so that its proper transform represents ei−ex1
−· · ·−exn

. Repeating

this process, the spheres in the jth arm represent homology classes as follows.

h− e1 − e1,j1 − · · · − e1,jn1,j

e1,jn1,j
− e2,j1 − · · · − e2,jn2,j

e2,jn2,j
− e3,j1 − · · · − e3,jn3,j

...

em−1,j
nm−1,j

− em,j
1 − · · · − em,j

nm,j
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Here all ei,jx are exceptional classes distinct from each other and from e1. There are no ex-

ceptional sphere classes which appear with nonzero coefficient in more than one arm because

the blow-ups are all done in distinct singular fibers which each correspond to distinct arms.

The only exceptional classes besides e1 that appear with nonzero coefficient in two different

spheres are in adjacent spheres, and appear with coefficient −1 in the inner-more sphere and

with coefficient +1 in the outer-more sphere.

It suffices to show that any other homological embedding of the dual graph uses no

more distinct exceptional classes than this embedding.

By lemma 3.3.3, each pair of spheres adjacent to the central +1 sphere in the dual

graph, must have exactly one shared ei appearing with −1 coefficient in both. In the plumb-

ing embedding, they all share the same class, e1. If they did not all share the same class,

there would necessarily be at least one sphere Cj
1 in which two exceptional classes ex and

ey appear with −1 coefficient, where ex appears with −1 coefficient in Cj1
1 , · · · , C

jn
1 and ey

appears with −1 coefficients in a disjoint set of spheres C
jn+1

1 , · · · , Cjm
1 . There is a third

exceptional class ez which appears with −1 coefficient in Cj1
1 and C

jn+1

1 . Now consider the

homology embedding where Cj
1, C

j1
1 , · · · , C

jm
1 all share the same ex with non-zero coefficient.

Then in order to keep the squares of the homology classes of Cj
1, C

j1
1 , and C

jn+1

1 the same,

there must be three new distinct exceptional classes ea, eb, ec, with one appearing with co-

efficient −1 in each of these classes. Therefore decreasing the number of distinct ei’s which

are shared between the spheres adjacent to the central vertex, increases the total number of

distinct exceptional classes appearing with nonzero coefficients in the embedding.

By lemma 3.3.5, spheres which are adjacent in the same arm must share at least one

exceptional class with nonzero coefficients. In the plumbing embedding, the only sharing
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Figure 5.2

of exceptional classes (other than e1 which was discussed in the previous paragraph) is a

single exceptional class shared between consecutive spheres within an arm. Therefore this

homology embedding has the minimal possible amount of sharing of exceptional classes away

from the central vertex. If more of these exceptional classes were shared amongst multiple

different spheres, the total number of exceptional classes appearing with non-zero coefficient

would decrease. This implies that the plumbing homology embedding maximizes the number

of exceptional classes which appear with nonzero coefficient.

Therefore, the original plumbing has the maximal Euler characteristic of any minimal

convex filling, since all convex fillings appears as the complement of the symplectic embedding

of the dual graph into a blow-up of CP2.

5.2 Star surgeries unobtainable from rational blow-downs

Initially, one might ask whether every symplectic filling of a dually positive Seifert

fibered spaces with its canonical contact structure can be obtained from the plumbing by

some sequence of already understood symplectic rational blow-down operations. In fact, this

result was shown to be true when the boundary is a lens space with its canonical contact

structure in [BO]. Here, we show that this is not the case for Seifert fibered spaces with an

explicit example. In particular, we will show that the plumbing according to the graph in
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figure 5.2a has a star-surgery operation which is not equivalent to any sequence of symplec-

tic rational blow-downs (where here symplectic rational blow-down includes Fintushel and

Stern’s original family, Park’s generalization, as well as the further negative definite exam-

ples classified in [SSW08] and [BS11]). This example is a special case of those considered in

section 4.3.

Theorem 5.2.1. The boundary (Y, ξcan) of the plumbing of spheres P , plumbed according

to the graph in figure 5.2a, has exactly two minimal strong symplectic fillings. One is the

plumbing itself and the other has Euler characteristic 2. The filling of Euler characteristic

2 cannot be obtained from the plumbing by any single symplectic rational blow-down, or any

sequence of symplectic rational blow-downs.

Proof. The dual graph is given in figure 5.2b. The only possible homological embeddings

allowed by lemma 3.3.8 and the restrictions of the squares of the dual graph spheres are

given below.

C1 C2 C3 C4 C5

Emb 1 h− e1 − e2 − e3 h− e1 − e4 − e5 h− e1 − e6 − e7 h− e1 − e8 − e9 h− e1 − e10
Emb 2 h− e1 − e3 − e4 h− e1 − e5 − e6 h− e2 − e3 − e5 h− e2 − e4 − e6 h− e1 − e2

There is at most one isotopy class of smooth embeddings for each of these two homological

embeddings, by corollary 3.4.2. Therefore there are at most two diffeomorphism types of

convex symplectic fillings of the canonical contact boundary of this plumbing.

The Euler characteristic of the two potential complementary fillings is

χ(CP2 #N CP2)− χ(Dual Graph) = 3 +N − 7 = N − 4.

Thus, here we see there are at most two minimal strong symplectic fillings, one of Euler

characteristic 6 and the other of Euler characteristic 2. The first homological embedding is
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Figure 5.3: The Lefschetz fibration for the filling of Euler characteristic two.

that of the dual graph construction, so the original plumbing graph is realized as a com-

plementary filling to such an embedding. The second filling of Euler characteristic two is

realized by a Lefschetz fibration as shown in figure 5.3. The fact that the boundary open

book supports the correct contact structure ξpl follows from lemma 4.3.2.

Any sequence of symplectic rational blow-downs of spheres contained inside the

plumbing P would produce a sequence of symplectic fillings of the same contact bound-

ary (since the rational blow-downs are symplectic operations that are performed on the

interior). There are only two minimal symplectic fillings of this particular contact manifold,

the plumbing and the smaller filling. Therefore, the only way it would be possible to obtain

the smaller filling from the plumbing by a sequence of rational blow-downs is by a single

rational blow-down; there can be no intermediate steps. A rational blow-down replaces a

neighborhood of a set of embedded symplectic spheres (whose union is simply connected),

by a rational homology ball. Therefore the change in the Euler characteristic of a manifold

before and after a rational blowdown, is precisely the number of spheres in the rational

blow-down. The Euler characteristic of the smaller filling in this case is 2, and the Euler

characteristic of the plumbing is 6. Therefore we need to check which plumbing graphs with
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Figure 5.4: Non-linear graphs with four vertices which can be rationally blown down [BS11].

4 vertices can be rationally blown down.

Such graphs are either linear, or have three arms of length one. The classification

in [BS11] describes explicitly which graphs with three arms can be rationally blown down.

The three of these where each arm has length one are shown in figure 5.4. The linear

graphs which can be rationally blown include the examples of Fintushel and Stern and

the more general examples of Park, where the continued fraction expansion of the weights

is − p2

pq−1
for gcd(p, q) = 1. There is an inductive procedure to build all such plumbings

(described in [SSW08] section 4), where the induction increases the length of the plumbing

by one each time. This shows there are four different linear plumbings of length 4 which

have rational homology ball fillings. The self-intersection numbers of the spheres in the

plumbings are: (−7,−2,−2,−2) (the original Fintushel-Stern rational blow-down with p =

5), (−3,−5,−3,−2) (Park’s generalization with p = 8, q = 3), (−2,−2,−5,−4) (Park’s

generalization with p = 7, q = 5), and (−2,−6,−2,−3) (Park’s generalization with p = 7,

q = 4).

If the plumbing P could be symplectically rationally blown down to obtain the smaller

filling, that would mean that there exist four symplectic spheres in P whose intersection data

is specified by one of these seven graphs. We can use the adjunction formula to rule out

this possibility. Note that H2(P ;Z) is generated by the five spheres which are the cores

of the disk bundles that are plumbed together. We denote the sphere corresponding to
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the central vertex by C0, and the spheres corresponding to the vertices in the four arms

by C1, C2, C3, and C4. The Ci are a symplectic spheres, so the adjunction formula holds:

〈c1(ω), Ci〉 = C2
i + 2. Therefore, 〈c1(ω), [C0]〉 = −4 and 〈c1(ω), [Ci]〉 = 0 for i = 1, 2, 3, 4.

Now for any other symplectic sphere S embedded in P , we can write [S] =
∑4

i=0 ai[Ci].

Then [S]2 + 2 = 〈c1(ω), [S]〉 = −4a0. In particular, [S]2 + 2 must be divisible by 4 since a0

must be an integer. All of the graphs with four vertices representing plumbings that can be

rationally blown down contain at least one sphere whose self-intersection number +2 is not

divisible by 4. Therefore none of these symplectic plumbings which can be rationally blown

down, can embed into P .

Remark 5.2.2. In fact none of these rational blow-downs can be done smoothly either because

the spheres to be rationally blown down have odd intersection form whereas P has even

intersection form. However, it is not clear that there is no sequence of smooth (but not

symplectic) rational blow-downs/ups which results in the diffeomorphism type of the smaller

filling, since the intermediate steps need not be symplectic in this case. However, this result

shows that as a symplectic operation, star surgery is strictly more general than rational

blowdowns.
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Chapter 6

Translating to monodromy substitutions

Because each of the dually positive Seifert fibered spaces with their canonical contact

structures are supported by planar open books, Wendl’s theorem (theorem 2.4.2) implies

that every minimal symplectic filling corresponds to a Lefschetz fibration, or equivalently,

a positive factorization of the monodromy of the canonical planar open book that supports

the contact structure. Two different positive factorizations of the same monodromy element

yield two different minimal symplectic fillings of the same contact manifold, and an example

of such a pair of factorizations is called a monodromy substitution. Thus one could classify

symplectic fillings of Seifert fibered spaces by studying all different positive factorizations

of the monodromy elements for the open books supporting ξpl coming from theorem 2.4.1.

The methods used for classification in chapter 3 take a rather different perspective on this

classification problem so it is nontrivial to work out the relationship between these two

methods. While the homological embedding classifications used in section 3 are easy to

carry out, the monodromy substitutions are often easier to work with in applications to 4-

manifold topology. In this chapter, we work to explain these translations in order to utilize

the strengths of both methods.
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6.1 Translations for the canonical plumbing fillings

We begin the translation project with the fillings that we know exist for all Seifert

fibered spaces with their canonical contact structure: the convex star-shaped plumbings.

The goal of the translation is to demonstrate a process that starts with the data of the

embedding of the dual graph into CP2 #N CP2 which is complementary to the plumbing

filling and ends with the data of the positive monodromy factorization corresponding to the

Gay-Mark Lefschetz fibration of theorem 2.4.1.

We will see that this process yields a correspondence between the vertices of the

dual graph and the boundary components of the planar fibers of the Lefschetz fibration.

Moreover, the vanishing cycles of the canonical Lefschetz fibration can be determined via the

self-intersection number markings on the vertices of the dual graph. Because the canonical

Lefschetz fibration is determined by the graph for the convex plumbing, and the dual graph

for the concave plumbing is determined by the graph, it is obvious that there is some way to

determine the canonical Lefschetz fibration from the dual graph. What is most interesting

about this correspondence, is that it provides a model indicating the correspondence between

the embedded spheres of the concave plumbing and the monodromy substitutions. We state

the correspondence first and then explain how this relates to the embedding of the concave

plumbing in the dual graph construction of section 3.1.

Let Γ′ denote the dual graph of a dually positive star-shaped graph Γ. Label each of

the non-central vertices in the dual graph vji such that j specifies the arm that the vertex

is in, and i specifies the distance (number of edges) between vji and the central vertex. The

canonical Lefschetz fibration for the convex plumbing for Γ is then given by the following

procedure using the data of Γ′.
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Start with a disk with a single boundary parallel vanishing cycle. For each arm of the

dual graph choose a subdisk such that these subdisks are all disjoint from each other and the

boundary parallel vanishing cycle. In arm j, start with vj1 (which is adjacent to the central

vertex), and suppose it has weight −nj
1 ≤ −1. Place nj

1 vanishing cycles on concentric curves

which are parallel to the boundary of the subdisk and place a hole at the center of the disk

labelled hj1. If there are more vertices in the dual graph in arm j, choose a subdisk which lies

between the two innermost vanishing cycles just added (or if only one vanishing cycle was

added, in a neighborhood just outside of it). If the weight of vj2 is −n
j
2, place n

j
2−1 concentric

vanishing cycles parallel to the boundary of this new subdisk. Add a new hole labelled hj2 at

the center. If there are more vertices in arm j, identify a subdisk between the two innermost

vanishing cycles just added (or just outside of the single vanishing cycle just added if nj
2 = 2)

and repeat the procedure for vj3 (adding n
j
3−1 vanishing cycles and a hole), and so on until all

the vertices in arm j of the dual graph have been assigned a corresponding hole. After doing

this procedure for all arms of the dual graph Γ′, we obtain the canonical Lefschetz fibration

for the plumbing corresponding to the graph Γ. The reader can convince him/herself that

the combinatorial procedure for producing the canonical Gay-Mark Lefschetz fibration in

this case matches up with the combinatorial procedure for producing the dual graph. Figure

6.1 shows a demonstrative example.

Now we show how this correspondence grows naturally out of a sequence of handle-

body diagrams for the embedding of the concave dual plumbing into CP2#N CP2 and the

complement of the embedding. Suppose Γ′ has central vertex marked +1, d arms, and the

marking for the vertex in the jth arm of distance i from the center is −nj
i . To exhibit the

embedding of the corresponding plumbing into CP2#N CP2 such that the complement is
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Figure 6.1: An example of a dual graph (top left), its corresponding graph (bottom left), and
the corresponding canonical Lefschetz fibration for the plumbing of the lower graph, repre-
sented by the fiber with vanishing cycles drawn in blue in the center, and as a handlebody
on the right (complete the braid trivially).

the convex plumbing, we start with a handlebody diagram for CP2 with (d + 1) 2-handles

attached along unknots linked together with a full +1 twist and with +1 framings. To make

this a diagram for CP2 we cancel d 2-handles with d 3-handles, and attach a 4-handle to close

off the manifold. The attaching circles represent the equators of d + 1 complex projective

lines in CP2. Then we blow-up according to the dual graph construction of section 3.1. First

blow-up at the common intersection point of d of the complex projective lines, which in the

diagram corresponds to introducing a new −1 framed 2-handle which links with, untwists,

and reduces the framings on d of the original 2-handles. This results in figure 6.2a without

the xj boxes, assuming the vertical strands have the tops and bottoms identified and have

0-framing. The vertical strands represent the equators for the plumbing spheres C1
1 , · · · , C

d
1

(the first sphere in each arm of the dual plumbing). We blow-up along each of these spheres
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(a) Embedding of dual
graph. Include d 3-handles
and one 4-handle.

(b) Figure for box xj . The value of m

also depends on j despite the notation.
All orange curves have framing −1.

Figure 6.2: Embedding the dual plumbing into CP2 #N CP2 via the canonical embedding
given by the dual graph construction.

nj
1 times to adjust the framing down to −nj

1, and then if the arm has length greater than

one, the last of these exceptional spheres becomes the next sphere in the arm. Then blow-up

along this chosen exceptional sphere nj
2 − 1 times to adjust its framing to −nj

2, and use

the last of these exceptional spheres for the next sphere in the arm (if it exists). Continue

until the entire arm is built. At the end of this process, we have an embedding of the dual

plumbing which is represented by the handlebody of figure 6.2 with the xj boxes as indicated.

Now we will show how this particular handlebody for CP2#N CP2, which displays the

embedding explicitly, can be used to produce the canonical Gay-Mark Lefschetz fibration

structure. First we cut out the embedded dual plumbing by removing the 0-handle and

the 2-handles whose cores are parts of the core spheres of the plumbing. Then turn the

resulting manifold with boundary upside-down. This results in figure 6.3. After simplifying
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(a) (b) Figure for box x̄j . Color framings: 〈1〉, 0

Figure 6.3: The complement of the dual plumbing upside-down.

the surgery diagram by Kirby calculus blow-downs, we get figure 6.4.

Further Kirby calculus moves are performed within the boxed region in figure 6.5.

Our goal is to reach a handlebody diagram for a planar Lefschetz fibration, so we want a

trivial braid of dotted circles representing 1-handles. This braid lies in a solid torus fibered

by meridional disks that are pierced by the braid strands. The 2-handles should have −1-

framed attaching circles which lie in these transverse meridional disks. We must stabilize

the diagram by introducing a canceling 1-2-handle pair for each vertex in the dual graph

beyond the first in each of the d arms (figure 6.5b). Recall that the number of 1-handles in

the Lefschetz fibration diagram is equal to the number of holes in the disk which makes up

its fibers and this is equal to the number of vertices in the arms of the dual graph. There

are of course many ways to stabilize, so knowing what type of stabilization works to produce

a Lefschetz fibration in the complement of the canonical embedding is useful as a clue for
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(a) (b) Figure for box x̄j . Color framings: −1

Figure 6.4: The complement of the dual plumbing upside-down, continued.

repeating this process for more complicated embeddings. We then perform a sequence of

1-handle slides, in order to arrange the 1-handles so that they are all components of the

same trivial braid which runs transversally to the Seifert disks of the −1-framed attaching

circles (figure 6.5c). The key pieces of this handle calculus sequence to remember for future

use are the stabilizations and these 1-handle slides.

Examining the piece of the Lefschetz fibration given by figure 6.6c, which gives the

piece for a single arm, we see that this gives the vanishing cycles and holes described on the

subdisk for the chosen arm as described above in terms of the dual graph. The pieces for

the various arms fit together into figure 6.6a which provides a handlebody diagram for the

canonical Lefschetz fibration on the convex plumbing.
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(a) Blow-down 〈1〉 from figure 6.4b.
Color framings: −1, −2

(b) Stabilize. Color framings: −1, −2

(c) Handleslide. Color framings: −1 (d) Repeat. Color framings: −1

Figure 6.5: The complement of the dual plumbing upside-down, focusing on the portion
corresponding to one arm.
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(a) Fit figure 6.6c into the yj
boxes for the complete Lefschetz
fibration. The new dotted circles
in the yj boxes run through the
displayed −1 curve.

(b) Isotopy from figure 6.5d.
Color framings: −1

(c) Box yj . From previous dia-
gram, slide 1-handles over each
other. Color framings: −1

Figure 6.6: Handle moves to produce a Lefschetz fibration.
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6.2 Translating homological embeddings of the Cj
1

In the canonical embedding of the dual graph, the homology classes of C1
1 , · · · , C

d
1

all share a single exceptional class (e1) with coefficient −1. We saw in section 4.4 that more

interesting homological embeddings can be realized subject to the constraint that every pair

of [C1
1 ], · · · , [C

d
1 ] shares a single exceptional class with coefficient −1 (lemma 3.3.3). In

the case where the dual graph has at most six arms, each of length one, all homological

possibilities allowed by lemma 3.3.3 were realized by symplectic embeddings obtained by

blowing up a configuration of complex projective lines. We found a Lefschetz fibration

corresponding to each embedding, and we will go through here the translation of the most

complicated embedding of that section (figure 4.19b repeated here as figure 6.7a). Then we

will discuss some limitations on extending the examples of section 4.4 to a larger number of

arms.

6.2.1 A particularly interesting six arm embedding

To translate the embedding of a dual graph with six arms each consisting of a single

sphere into CP2#N CP2 shown in the handle structure of figure 6.7a to a handlebody for

the complement with a visible Lefschetz fibration structure, we follow the same sorts of

steps as were followed in the simple examples of section 4.1, with some minor additional

complications that we discuss here. Recall that this embedding represents the homological

embedding:
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E6
5

[C1
1 ] = ℓ− e1 − e3 − e5 − e· − · · · − e·

[C2
1 ] = ℓ− e1 − e4 − e6 − e· − · · · − e·

[C3
1 ] = ℓ− e1 − e2 − e7 − e· − · · · − e·

[C4
1 ] = ℓ− e2 − e4 − e5 − e· − · · · − e·

[C5
1 ] = ℓ− e2 − e3 − e6 − e· − · · · − e·

[C6
1 ] = ℓ− e3 − e4 − e7 − e· − · · · − e·

Note that the embedding of figure 6.7a was produced by starting with six strands

braided according to a full positive twist. Then we isotope the braid slightly to bring

together triples of crossings between strands corresponding to three spheres which share an

exceptional class. Finally blow-up to reverse the crossings in the upper half of the twist,

thus unlinking the six strands from each other.

A diagram for the complement of the embedded dual plumbing is given by figure

6.7b. This simplifies to figure 6.7c. Rotating the plane of projection by 90◦ so that we take

the perspective from the left side of figure 6.7c, we get the Lefschetz fibration handlebody

of figure 6.8. The only additional tricky part is that once we fix our identification of the

fibers with a six holed disk, some of the vanishing cycles do not enclose the holes convexly.

Instead, these curves are the image of the curve that encloses the same holes convexly under

a Dehn twist about some other curve. More specifically, the fourth vanishing cycle from the

top is the image of the curve convexly enclosing holes 2, 4, and 6, under a a right handed

(positive) Dehn twist about the curve convexly enclosing holes 5 and 6, as shown in figure

6.9. Similarly the second to last vanishing cycle is the image of the curve convexly enclosing

holes 3 and 6 under a right handed Dehn twist about the curve convexly enclosing holes 4,

5, and 6. Using the conjugation relation we can write the monodromy of the open book on
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the boundary of this Lefschetz fibration as follows, as claimed in section 4.4.

Dn1−2
1 Dn2−2

2 Dn3−2
3 Dn4−2

4 Dn5−2
5 Dn6−2

6 D1,2,3D1,4D1,5,6(D
−1
5,6D2,4,6D5,6)D2,5(D

−1
4,5,6D3,6D4,5,6)D3,4,5

6.2.2 Translating more general embeddings of the Cj
1

This procedure for obtaining a Lefschetz fibration is repeatable for more general

braids which can become unlinked by sequences of blow-ups. The homological configuration

determines how the exceptional spheres intersect the dual graph spheres, or equivalently

the linking of the −1-framed blow-up curves with the strands of the braid. While many

homological configurations can be realized by blow-ups that unlink the strands of the braid,

it may not always be possible. Here we provide some examples of homological data for the

Cj
1 which can always be realized in this way, and an example which we have been unable to

realize and have reason to suspect it is not realizable.

Consider the homological configuration where [C1
1 ], · · · , [C

j0
1 ] all share a single excep-

tional class, and all pairs of [Cj
1 ] which are not a subset of this collection have a unique

distinct exceptional class in common. Then we can realize this embedding symplectically by

starting with a collection of j0 complex projective lines through a single point p, together

with d − j0 generic lines, and one additional distinguished generic line. Then blow-up once

at p and once at each of the intersection points between pairs of non-distinguished lines.

Blow-up additional times at points on the proper transforms of the non-distinguished lines

until their self-intersection numbers agree with the dual graph. In terms of the handlebody

braid picture, this embedding can be realized by starting with the standard form for the

braid made of a full twist of d strands. Then blow-up at p, introducing a new −1 curve
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(a) E6

5 : +1, −n1, −n2,
−n3, −n4, −n5, −n6, −1

(b) Complement upside-
down. 〈−1〉, 〈n1〉, 〈n2〉,
〈n3〉, 〈n4〉, 〈n5〉, 〈n6〉, 〈1〉,
0

(c) Complement upside-
down. 2-handles are black
attached with framing -1

Figure 6.7
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Figure 6.8: Lefschetz fibration obtained by rotating the projection plane of figure 6.7c. The
non-convex curves are shown in the fibers. Recall our convention that the outward normal
to the disk points downward in the direction of the trivial braid of dotted circles.

Figure 6.9: Applying a positive right handed Dehn twist about the curve convexly enclosing
holes 5 and 6 to the curve convexly enclosing holes 2, 4 and 6.

130



into the picture, which links with the right-most j0 strands and reverses all of the crossings

between them in the upper half of the twist. Blow-up additional times to introduce −1

curves linking pairs of strands and reversing the remaining crossings in the upper half of the

full twist. Because all of the crossings in the upper half of the twist have been reversed and

no isotopy was performed on the diagram introducing new crossings, the remaining braid of

d strands is unlinked. Blowing up additional times introducing −1 curves which only link a

single strand modifies the framings without changing the braid. Cutting out the plumbing

and turning the result upside down as we have done in previous examples yields a Lefschetz

fibration whose fibers are d-holed disks. The first vanishing cycle is a curve convexly enclos-

ing the first j0 holes. The remaining vanishing cycles enclose the other pairs of holes and are

ordered as {1, j0 + 1}, · · · , {1, d}, {2, j0 + 1}, · · · , {2, d}, · · · , {j0, j0 + 1}, · · · , {j0, d}, {j0 +

1, j0+2}, · · · , {j0+1, d}, {j0+2, j0+3}, · · · , {j0+2, d} · · · {d−1, d}. Note that when j0 = d,

we are in the case of the canonical embedding so the complement is the convex plumbing

with the Gay-Mark Lefschetz fibration. The following lemma shows that the monodromies of

the open books bounding the Lefschetz fibrations for all values of j0 are all equal, and in fact

are related by a sequence of daisy relations, each of which corresponds to a Fintushel-Stern

rational blow-down.

Lemma 6.2.1. On the d-holed disk, with holes labeled counter-clockwise {1, · · · , d}, the

elements φj given by the products

Dj−2
1 · · ·Dj−2

j D1,··· ,j(D1,j+1 · · ·D1,d) · · · (Dj,j+1 · · ·Dj,d)(Dj+1,j+2 · · ·Dj+1,d)

·(Dj+2,j+3 · · ·Dj+2,d) · · · (Dd−1,d)

for 2 ≤ j ≤ d are all equal and φj+1 is related to φj by a daisy relation (equation 2.3.2) and

commutation.
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Proof. The equality statement follows from the daisy relation statement.

First we claim that

(D1,j+1 · · ·D1,d) · · · (Dj,j+1 · · ·Dj,d) = (D1,j+1 · · ·Dj,j+1)(D1,j+2 · · ·D1,d) · · · (Dj,j+2 · · ·Dj,d)

by commuting Dehn twists about disjoint curves. Indeed, we can commute D2,j+1 past D1,y

for j+2 ≤ y ≤ d because the holes 2 and j+1 lie outside the convex hull of the holes 1 and

j + 2, · · · , d. Similarly D3,j+1 can commute past Dx,y for 1 ≤ x ≤ 2 and j + 2 ≤ y ≤ d, and

so on. This shows that φj can be equivalently written as

Dj−2
1 · · ·Dj−2

j D1,··· ,j(D1,j+1 · · ·Dj,j+1)(D1,j+2 · · ·D1,d) · · · (Dj,j+2 · · ·Dj,d)·

·(Dj+1,j+2 · · ·Dj+1,d)(Dj+2,j+3 · · ·Dj+2,d) · · · (Dd−1,d)

Applying the daisy relation to D1,··· ,j(D1,j+1 · · ·Dj,j+1) we get

Dj−2
1 · · ·Dj−2

j (Dj−1
j+1D1 · · ·DjD1,··· ,j,j+1)(D1,j+2 · · ·D1,d) · · · (Dj,j+2 · · ·Dj,d)·

·(Dj+1,j+2 · · ·Dj+1,d)(Dj+2,j+3 · · ·Dj+2,d) · · · (Dd−1,d)

which we observe is equal to φj+1.

Note that when d = 2, this is the case where each pair of spheres shares a distinct

exceptional class, and the corresponding Lefschetz fibration gives one side of the generalized

lantern relation (equation 2.3.3).

The examples of section 4.3 provide another family of translations which can be

demonstrated through handlebody diagrams in the same way.
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More general homological configurations do not always work out as nicely. For ex-

ample consider a dual graph with seven arms, each consisting of a single sphere. There is a

homological configuration where seven triples share an exceptional class, and every pair is in

exactly one of these seven triples. The triples are specified by the Fano plane (figure 6.10).

To find a symplectic representative of this embedding, we would like to take a configuration

of pseudoholomorphic spheres in CP2 which intersect as do the lines of the Fano plane and

blow up at their intersections. It is relatively straightforward to prove algebraically that

there is no collection of seven complex projective lines in CP2 intersecting as specified by

the Fano plane. It is unclear whether a pseudoholomorphic line arrangement with this com-

binatorial intersection data exists. On the one hand, for a given almost complex structure

J on CP2, the J-holomorphic lines satisfy many similar properties to genuine complex pro-

jective lines and the space of J-holomorphic lines is diffeomorphic to the space of complex

projective lines (they are both CP2). However, it is possible that there is a dependence on J

in the topology of the space of J-holomorphic line arrangements with certain combinatorial

intersection data. Hoping that such a pseudoholomorphic arrangment exists, we could try

to proceed directly with the handle calculus of the braid to find a smooth embedding which

has a Lefschetz fibration in its complement. However, attempts to do this by the author

have failed. The issue is that it seems impossible to arrange the crossings of the braid in the

upper half of the full twist so that all seven triples of strands have their crossings grouped

together, without introducing additional crossings between the strands. These additional

crossings can prevent the blow-ups from unlinking the braid. One attempt by the author to

realize such a configuration had the blow-ups change the 1 full twisted braid into a seven

component link with four unlinked components together with a copy of the Borromean rings.
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Figure 6.10: The Fano Plane: an arrangement of seven lines which intersect in seven triple
points, which can be realized as projective lines over a field of characteristic 2 but not over
C.

The Borromean rings are not slice so the attaching circles for the 2-handles that are part

of the braid could not provide equators of disjointly embedded spheres. Still it remains an

open question as to whether the desired embedding exists, and whether any line arrangement

which cannot be realized by complex projective lines can be realized by J-holomorphic lines

in CP2 for some almost complex structure J .

A final important note is that any homological configuration affecting only the Cj
1

which can be realized in the absence of Cj
i for i > 1, can also be realized when the dual

graph arms are longer. To obtain a Lefschetz fibration in these cases, use the series of

stabilizations described in section 6.1 for the longer parts of the arm, and combine this

(independently) with the braid moves on the full twist of strands, and their translation to

a Lefschetz fibration. Other types of embeddings of the longer parts of the arms which are

independent of the Cj
1 , can also be combined with these examples (see the next section for

examples). This implies that the examples of section 4.4 can generalize to translations for

fillings of Seifert fibered spaces of a more general family where the value of e0 and number

of arms remains the same as one of the examples of section 4.4, but the coefficients on the

vertices in the arms can vary instead of necessarily all being −2.
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6.3 Translating homological embeddings of the Cj
i for i > 1

In this section we focus on translating dual graph embeddings to Lefschetz fibrations

when the homological embedding differs from the canonical one in at least one sphere which

is not adjacent to the center. One case of this is when the homological embedding of the

dual plumbing differs from the canonical one only within a single arm. In this case, the

complementary filling will be obtained by the following process. Start with the convex

plumbing, and consider a neighborhood of the spheres in the corresponding arm together with

the central sphere. This neighborhood has convex boundary which is a lens space with its

canonical contact structure. The filling which is complementary to the described embedding

of the dual graph is obtained by replacing this neighborhood of spheres with an alternate

filling of the lens space. Such fillings were classified by Lisca [Lis08]. Bhupal and Ozbagci

[BO] took Lisca’s Stein handlebodies and showed how to turn them into handlebodies which

exhibit Lefschetz fibrations. Therefore translations in this case have essentially been covered

(though the language in [BO] is slightly different). There are similar translations for fillings

obtained from the convex plumbing by replacing multiple linear strings of spheres within

various arms by alternate fillings of the lens space boundary. In this case the condition

on the homological embedding is that the exceptional classes which appear with non-zero

coefficient in [Cj
i ] for i > 1 do not appear in [Cj′

i ] for any j
′ 6= j and any i.

Now we move onto some examples of homological embeddings which make use of

the non-linear structure of the plumbing graphs. The fillings which are created using lens

space fillings come from homological embeddings where the longer parts of the arms do not

interact with each other. Here we will consider how exceptional classes can appear with non-

zero coefficient in multiple arms beyond the required sharing between the spheres adjacent
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to the center. For the simplest of these examples, we can provide a full translation from

the homological embedding to a Lefschetz fibration. We can combinatorially describe all of

the symplectically realizable homological embeddings involving the spheres away from the

center, so we do not run into the same limitations as in section 6.2. However, the Kirby

calculus becomes more involved for increasingly complicated homological possibilities.

First we recall from section 3.4.1 how the spheres in the dual plumbing which are

not adjacent to the center arise. The spheres adjacent to and in the center are proper

transforms of pseudoholomorphic lines in CP2, but the outer spheres are proper transforms

of exceptional spheres. We can recover the homological configuration by keeping track of

the original pseudoholomorphic lines, all of the newly introduced exceptional spheres during

the blow-up sequence, and which of these spheres pass through the blow-up points at each

stage.

In the canonical embedding, for i > 1, Cj
i is the proper transform of an exceptional

sphere obtained by blowing up at a point on Cj
i−1 which is not on any other sphere that we

are tracking. Other than the blow-up which separates the intersection of the d pseudoholo-

morphic lines, all the blow-ups are done at points which lie on a single tracked sphere. If we

want to build an embedding where the outer parts of different arms interact, we need to build

some of the arms from exceptional spheres which intersect more than one Cj
1. Depending on

the intersection configuration of the pseudoholomorphic lines, such exceptional spheres will

intersect somewhere between 2 and d of the Cj
1 ’s.

Some examples of blow-up sequences and the corresponding homological embeddings

are shown schematically in figures 6.11, 6.12, and 6.13.
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Figure 6.11: Blowing-up schematic. In the final configuration we have an embedding of a
star-shaped plumbing with homological data [C0] = ℓ, [C1

1 ] = ℓ−e1−e2−e4, [C
2
1 ] = ℓ−e1−e3,

[C3
1 ] = ℓ− e2 − e3, [C

3
2 ] = e2 − e4.

-1

-1

-1 -2

1
-1

-1
-2

Figure 6.12: Blowing-up schematic continued from figure 6.11. Final homological embedding:
[C0] = ℓ, [C1

1 ] = ℓ − e1 − e2 − e4, [C
1
2 ] = e4 − e6, [C

1
3 ] = e2 − e4 − e5, [C

2
1 ] = ℓ − e1 − e3,

[C3
1 ] = ℓ− e2 − e3 − e5.
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Figure 6.13: Blowing-up schematic. Final homological embedding:
[C0] = ℓ, [C1

1 ] = ℓ − e1 − e2 − e3, [C1
2 ] = e1 − e7 − e8 [C2

1 ] = ℓ − e1 − e4 − e5 − e7,
[C3

1 ] = ℓ− e1 − e6 − e8, [C
4
1 ] = ℓ− e2 − e4 − e6, [C

5
1 ] = ℓ− e3 − e5 − e6.

We will start by translating embeddings in which some Cj
2 is the proper transform

of an exceptional sphere which was introduced by blowing up at the intersection of two of

the pseudoholomorphic lines. In order to include this sphere into one of these arms, we need

to blow-up at its intersection with the other arm so that it is disjoint from the other arm.

An example of this is represented schematically in figure 6.11, and the local picture of the

relevant portion of the embedding is exhibited through a handle structure in figure 6.14.

We would like to see how adding in this sphere to the arm via the additional blow-up

modifies the Lefschetz fibration for the complementary filling. To avoid making assumptions

about the rest of the embedding, we do this translation locally. We assume that the entire

diagram has a translation if we replaced the embedding of the dual plumbing with the extra

−2 sphere shown on the right of figure 6.14 with the embedding of the dual plumbing without

this extra sphere and blow-up as shown in the center of figure 6.14. This translation will
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Figure 6.14: Handle structure for an embedding where an exceptional sphere intersecting
two other spheres is included into one of the arms.
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Figure 6.15: Local translation for the embedding of figure 6.14.
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Figure 6.16: Proof of equivalence of the local diagrams in figures 6.15c and 6.15d.
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involve rotating the projection plane when the upside-down diagram is simplified so that

the bracketed surgery curves are eliminated and we can use dotted circle notation for all of

the one handles. We will continue the convention that the rotation is done by 90◦ clockwise

about the vertical axis, meaning we take the new projection to be the point of view of a

person standing on the left-hand side of the diagram. Note this is the convention that was

used for all our previous examples so this local move can be combined with others (the

convention was significant in the examples of sections 6.2, 4.3, and 4.4).

First we consider the diagram for the upside-down complement to the embedded dual

spheres (figure 6.15a and 6.15b). We assume the rest of the diagram can be translated with

a 90◦ rotation of the projection plane to get from figure 6.15b to figure 6.15c. In order to

give this the right Lefschetz fibration, we expect to need to stabilize once since we are adding

one extra sphere into the dual graph. The required stabilization is performed from figure

6.15c to figure 6.15d. The equivalence of these two diagrams is shown in figure 6.16.

Now we discuss how the monodromy substitution is affected by the additional blow-

up that allows us to include the exceptional sphere into an arm of the dual graph (e.g. the

final blow-up in figure 6.11 indicated in blue which creates the exceptional class e4.) This

means we will consider the canonical Lefschetz fibration and an alternate Lefschetz fibration

and how each of these changes under the additional blow-up and inclusion of the additional

sphere into the graph. We assume that the original monodromy substitution before blowing

up has the form

φxφyα = βφx,yγ

where α, β, and γ are products of positive Dehn twists, and φxφyα is the monodromy

factorization for the canonical Lefschetz fibration (up to commutative equivalence). The
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additional blow-up changes the dual graph by reducing by one the framing on the vertex in

one arm (the y arm) and adding a new vertex for a sphere of square −2 into the other arm

(the x arm). The effect on the canonical Lefschetz fibration is to add an extra vanishing

cycle in the collection around the hole y, and to add an extra hole (labelled x′) just outside

the inner-most vanishing cycle around x along with one vanishing cycle boundary parallel

to the new x′ hole. So if φxφyα is the factorization for the canonical Lefschetz fibration for

the dual graph before the additional blow-up, then the new canonical Lefschetz fibration is

φxφx′φ2
yα̃ where α̃ is the same set of positive Dehn twists as α, just now it is on the disk

with an extra hole x′, and every curve which went around x in α, now goes around x and x′

in α̃.

The monodromy substitution φxφyα = βφxyγ on the disk without the x′ hole induces

a relation on the disk with the x′ hole.

φx,x′φyα̃ = β̃φx,x′,yγ̃

Using this relation we find the following.

φxφx′φ2
yα̃ = β̃φ−1

x,x′φxφx′φyφx,x′,yγ̃

Applying a lantern relation to the right hand side gives the following new monodromy sub-

stitution.

φxφx′φ2
yα̃ = β̃φx,yφx′,yγ̃

This monodromy substitution corresponds to the local picture we obtained via the handle-

body decomposition in figure 6.15d. On the right hand side, the curve enclosing x and y is
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Figure 6.17: Handle structure for an embedding where n exceptional spheres are included
into one of the arms generalizing figure 6.14.

replaced by a curve enclosing x and y and a curve enclosing x′ and y, where x′ is a newly

introduced hole corresponding to the newly introduced 1-handle.

This move generalizes to families parameterized by the natural numbers in two ways.

Next, we will explain each of these generalizations and their translations.

6.3.1 Iterating blow-ups at the same point

The first way to generalize is to iterate the blow-ups. Start with two pseudoholomor-

phic lines (technically proper transforms of pseudoholomorphic lines) and the first exceptional

sphere which intersects these two lines and no others in the configuration. Blowing-up once

at one of the intersections allowed us to include the proper transform of the first exceptional

sphere into the dual graph configuration. Blowing-up additional times at the same intersec-

tion point with the other pseudoholomorphic line allows us to include the proper transform

of each previous exceptional sphere into the dual graph. The local picture of the embedding

for this generalization is in figure 6.17.

The translation to a Lefschetz fibration proceeds as before by turning the figure

upside-down as in figure 6.18, and simplifying the diagrams. Assuming a translation exists

outside of the local area which rotates the projection by 90◦ as usual, we get from figure
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6.18d to 6.18e. The stabilizations are done in figure 6.18f and the equivalence of figures 6.18e

and 6.18f is shown by the diagrams of figure 6.19.

The effect on the monodromy substitution is similar to the n = 1 case discussed

earlier. We assume as before that the original monodromy substitution before blowing up

n times has the form φxφyα = βφx,yγ. The additional blow-ups change the dual graph by

reducing the framing on the vertex in the y arm by n and adding n new vertices corresponding

to spheres of square −2 in the x arm. The canonical Lefschetz fibration for the modified dual

graph has n new holes in its fiber x1, · · · , xn. If φxφyα is the factorization for the canonical

Lefschetz fibration for the dual graph before the additional blow-up, then the new canonical

Lefschetz fibration is φxφx1 · · ·φxnφn+1
y α̃ where α̃ is the same set of positive Dehn twists as α,

but now on the disk with n additional holes x1, · · · , xn, and every curve which went around

x in α, now goes around x and x1, · · · , xn in α̃.

The monodromy substitution φxφyα = βφxyγ induces the relation φx,x1,··· ,xnφyα̃ =

β̃φx,x1,··· ,xn,yγ̃.

Using this relation we find the following.

φxφx1 · · ·φxnφn+1
y α̃ = β̃φ−1

x,x1,··· ,xnφxφx1 · · ·φxnφn
yφx,x1,··· ,xn,yγ̃

Applying a daisy relation with n+ 1 petals to the right hand side gives the following

new monodromy substitution.

φxφx1 · · ·φxnφn+1
y α̃ = β̃φx,yφx1,y · · ·φxn,yγ̃

This monodromy substitution agrees with the handlebody decomposition in figure 6.18f.
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Figure 6.18: Local translation for the embedding of figure 6.17. The projection is rotated in
the last two figures. The last two diagrams are equivalent by figure 6.19.
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Figure 6.19: Generalization of figure 6.16. Proves the equivalence of diagrams 6.18e and
6.18f.

6.3.2 Including exceptional spheres intersecting m lines

The second way to generalize is to include onto the end of an arm the proper transform

of an exceptional sphere which intersects more than two of the pseudoholomorphic lines.

Start with a diagram of the relevant m pseudoholomorphic lines and the exceptional sphere

intersecting it. Blowing-up once at each one of the intersections allows us to include the

proper transform of this exceptional sphere into the dual graph configuration. The local

diagrams for these embeddings are in figure 6.20.

The translation to a Lefschetz fibration proceeds as before by turning the figure

upside-down as in figure 6.21, and simplifying the diagrams. Once all of the surgery curves

with bracketed labels have been eliminated from the local diagram, we assume a global

translation can be made which rotates the projection plane as usual.

The effect on the monodromy substitution is similar to the previous case, though con-
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(a) (b)

Figure 6.20: Handle structure for an embedding where we include an exceptional sphere that
intersected m lines into one of the arms.

(a) Unlabelled
framings are 〈1〉

(b)

Figure 6.21: The complement of the embedding of figure 6.20.
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(a) (b)

Figure 6.22: Applying Kirby calculus moves to figure 6.21.
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(a) (b)

Figure 6.23: Obtained by rotating the projection plane from figure 6.22, assuming the rest
of the diagram has a translation.
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(a) (b)

Figure 6.24: The first diagram is related to figure 6.23b by the move in figure 6.16. The
second is related to the first by handle slides.
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(a) (b)

Figure 6.25: These diagrams are isotopy equivalent to those in figure 6.24. The goal is to
reach a Lefschetz fibration picture.
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jugation makes it trickier to write down. The appropriate assumption is that before blowing

up m − 1 times and including an extra sphere in the dual graph, the original monodromy

substitution has the form φx1
· · ·φxm

α = βφx1,··· ,xm
γ where the left side corresponds to the

canonical Lefschetz fibration. The additional blow-ups change the dual graph by reducing

by one the framing on the vertices in x2, · · · , xm arms and adding one new vertex corre-

sponding to spheres of square −m in the x1 arm. The canonical Lefschetz fibration for the

modified dual graph has one new hole in its fiber x0. The new canonical Lefschetz fibration

is φm−1
x0

φx1
φ2
x2
· · ·φ2

xm
α̃ (in α̃ every Dehn twist about a curve which went around x1, now

goes around x1 and x0). The monodromy substitution φx1
· · ·φxm

α = βφx1,··· ,xm
γ induces

the relation

φx0,x1
φx2

· · ·φxm
α̃ = β̃φx0,x1,x2··· ,xm

γ̃.

Using this relation we find the following.

φm−1
x0

φx1
φ2
x2
· · ·φ2

xm
α̃ = β̃φ−1

x0,x1
φm−1
x0

φx1
φx2

· · ·φxm
φx0,x1,x2,··· ,xm

γ̃

The right hand side is related to a positive factorization corresponding to the Lefschetz

fibration in figure 6.26a by a daisy relation which has been conjugated, as is visible in figure

6.26b.
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(a) (b)

Figure 6.26: Finally, we reach the Lefschetz fibration on the complement of the embedding.
The second figure shows how this is related to φ−1

x0,x1
φm−1
x0

φx1
φx2

· · ·φxm
φx′

1
,x1,x2,··· ,xm

by a
conjugated daisy relation.
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