MSRI SUMMER SCHOOL: 4-MANIFOLDS PROBLEM SESSION 1

(1) In this problem you will calculate the intersection form for $\mathbb{C P}^{2}$. We will use homogeneous coordinates $\{[x: y: z]\}$ on $\mathbb{C P}^{2}$ where $(x, y, z) \in \mathbb{C}^{3} \backslash\{(0,0,0)\}$ and $[x: y: z]=[\lambda x: \lambda y: \lambda z]$ for any $\lambda \in \mathbb{C} \backslash\{0\}$. (Each point $[x: y: z]$ corresponds to a complex line in \mathbb{C}^{3} through the origin. $\mathbb{C P}^{2}$ is the space of such lines.)
(a) Show that $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right) \cong \mathbb{Z}$ and a generator is represented by

$$
\mathbb{C P}^{1}=\{z=0\}=\{[x: y: 0]\} \subset \mathbb{C P}^{2}
$$

[You can use a cell decomposition of $\mathbb{C P}^{2}$ and cellular homology.]
(b) Consider the deformation of $\mathbb{C P}^{1}=\{z=0\}$ defined by

$$
\Sigma_{\varepsilon}=\{z+\varepsilon x=0\} \subset \mathbb{C P}^{2}
$$

Σ_{ε} is a small push-off of $\mathbb{C P}^{1}=\Sigma_{0}$. Calculate the number of intersection points between Σ_{ε} and $\mathbb{C P}^{1}$ for $\epsilon \neq 0$.
(c) Use the complex structure to orient $\mathbb{C P}^{1}, \Sigma_{\varepsilon}$, and $\mathbb{C P}^{2}$. Check that each intersection between $\mathbb{C P}^{1}$ and Σ_{ε} is positive. [You may want to choose a coordinate chart near the intersection point to see the tangent spaces.] Deduce the intersection form on $\mathbb{C P}^{2}$.
(2) Calculate b_{2}^{+}, b_{2}^{-}, signature σ, and determine whether the intersection form is even or odd, and whether or not it is unimodular in the following examples.
(a)

$$
Q_{X}=\left[\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

(b)

$$
Q_{X}=\left[\begin{array}{cc}
0 & 1 \\
1 & -n
\end{array}\right]
$$

(c)

$$
Q_{X}=H=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(d)

$$
Q_{X}=E_{8}=\left[\begin{array}{cccccccc}
-2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -2
\end{array}\right]
$$

(e)

$$
Q_{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -2 & 0 & 0 \\
1 & 0 & -2 & 0 \\
1 & 0 & 0 & -3
\end{array}\right]
$$

(3) This problem is about blow-ups and proper transforms.
(a) Consider curves in a 4-manifold which intersect transversally at a point, such that in a neighborhood B of the intersection point there exist local coordinates (x, y) (viewed as complex coordinates) so that in those coordinates the curves are given by

$$
C_{1}=\left\{y=m_{1} x\right\}, \quad C_{2}=\left\{y=m_{2} x\right\}, \quad \cdots \quad, C_{r}=\left\{y=m_{r} x\right\} .
$$

Assume $m_{1}, m_{2}, \ldots, m_{r}$ are all distinct. Verify that the C_{i} intersect pairwise transversally at the origin.
(b) Perform a blow-up at $(x, y)=(0,0)$. (Recall this transforms the space locally to

$$
\left.\left\{((x, y),[u: v]) \in B \times \mathbb{C P}^{1} \mid x v-y u=0\right\} .\right)
$$

Determine the local equations for the total and proper transforms for C_{1}, \ldots, C_{r}.
(c) Show that the proper transforms of C_{1}, \ldots, C_{r} are disjoint.
(d) Try repeating these steps with the curves intersecting tangentially and are modeled on $C_{1}=\left\{y=x^{2}\right\}, C_{2}=\left\{y=2 x^{2}\right\}$. How do the proper transforms intersect? Can you blow-up repeatedly to make them disjoint?
(e) You can also see what happens when you blow-up the singular curve $C=\left\{y^{2}=x^{3}\right\}$ at the origin. What do the total and proper transform look like? What happens if you blow-up repeatedly?
(4) If $X_{1} \# X_{2}$ is the connected sum of 4-manifolds X_{1} and X_{2}, show that $Q_{X_{1} \# X_{2}}=Q_{X_{1}} \oplus Q_{X_{2}}$. Generalization: If X_{1} and X_{2} are manifolds with boundary, and $\partial X_{1} \cong-\partial X_{2}$ is a homology sphere, show that the gluing of X_{1} to X_{2} along their common boundary has intersection form $Q_{X_{1}} \oplus Q_{X_{2}}$.
(5) This problem looks at equivalent intersection forms. We use the notation from problem 2 for standard intersection matrices.
(a) Show that $H \oplus[1]$ is equivalent by an integer change of basis to $[1] \oplus[-1] \oplus[1]$.
(b) Show that $E_{8} \oplus[1]$ is equivalent by an integer change of basis to $[-1] \oplus 8 \oplus[1]$.

