MSRI SUMMER SCHOOL: 4-MANIFOLD CONSTRUCTIONS PROBLEM SESSION 2

(1) Show that $E(n)$ is simply connected. Hint: Use the fact that $E(1)$ is simply connected and $E(n)$ is obtained by fiber summing. Inducting on n, use Seifert van Kampen on the decomposition

$$
E(n)=(E(1) \backslash \nu(F)) \cup_{\partial}(E(n-1) \backslash \nu(F))
$$

You will need to know $\pi_{1}(E(n-1) \backslash \nu(F))$ and $\pi_{1}(E(1) \backslash \nu(F))$ are generated by meridians of F (which you can also show using Seifert van Kampen), and that these meridians are actually null-homotopic in $E(1) \backslash \nu(F)$ (find a disk that the meridian bounds using a section).
(2) Calculate Euler characteristic of $E(n)$ from the fact that it is a fiber sum of copies of $E(1)$. Use this, together with your result from the previous problem that $E(n)$ is simply connected, to calculate the Betti numbers (ranks of homology). (Hint: You'll need Poincare duality for b_{3}.)
(3) The goal of this problem is to calculate the intersection form on $E(2)$. (You can also generalize this to find the intersection form for $E(n)$.)
(a) Calculate the intersection form restricted to the surfaces in $E(2)$ which we constructed in the lecture as follows:
(i) Using the formulas for $\phi_{1}, \ldots, \phi_{8}$, and the fact that $h^{2}=1, e_{i}^{2}=-1$ and $h \cdot e_{i}=$ $e_{i} \cdot e_{j}=0$ for $i \neq j$, determine the intersection form restricted to $\mathbb{Z}\left\langle\phi_{1}, \ldots, \phi_{8}\right\rangle$. Using the fact that all the other generators have 0 intersection with the ϕ_{i}, conclude that we get 2 direct summands of this in the intersection form for $E(2)$ (and n direct summands in $E(n)$).
(ii) Prove that the tori representing the classes f, t_{1}, and t_{2} have self-intersection 0 . Prove that $f \cdot t_{i}$ and $t_{1} \cdot t_{2}=0$. (Hint: use the realizations by tori contained in a T^{3} to construct push-offs.)
(iii) Calculate $t_{i} \cdot s_{i}$ and $\sigma \cdot f$. Next, gain further information about intersections from the facts from lecture that $s_{i}^{2}=-2, \sigma^{2}=-2$ (or more generally $-n$ in $E(n)$), and that the s_{i} can be realized by spheres disjoint from the ϕ_{i}, from σ and from each other. Conclude what the intersection form is on the restriction to $\mathbb{Z}\left\langle\sigma, f, t_{1}, s_{1}, t_{2}, s_{2}\right\rangle$.
(b) Comparing $b_{2}(E(2))$ with the number of surfaces we constructed and checking unimodularity of this intersection form, conclude that these surfaces provide a basis for $H_{2}(E(2) ; \mathbb{Z})$ and you have found the intersection form for $E(2)$.
(4) Show that $E(2) \# \overline{\mathbb{C P}}^{2}$ is homeomorphic to $\# 3 \mathbb{C P}^{2} \# 20 \overline{\mathbb{C P}}^{2}$. [Hint: Use the intersection form for $E(2)$ from the previous problem, together with Problem 5(b) from Problem Session 1.]
(5) Here we complete the check that for a basic class K on $E(n), K$ vanishes on the summands generated by copies of $\phi_{1}, \ldots, \phi_{8}$, following an argument of Stipsicz. Recall that

$$
\phi_{1}=e_{1}-e_{2}, \ldots, \phi_{7}=e_{7}-e_{8}, \quad \phi_{8}=e_{6}+e_{7}+e_{8}-h
$$

Use the intersection form you calculated in problem 3 on $\mathbb{Z}\left\langle\phi_{1}, \ldots, \phi_{8}\right\rangle$ for this problem.
(a) Show that the only elements in $\mathbb{Z}\left\langle\phi_{1}, \ldots, \phi_{8}\right\rangle$ which have square -2 are those of the form

$$
\begin{aligned}
& e_{i}-e_{j}, \quad \pm\left(h-e_{i}-e_{j}-e_{k}\right), i, j, k \in\{1, \cdots, 8\} \text { distinct } \\
& \quad \pm\left(2 h-\sum_{j=1}^{6} e_{i_{j}}\right)\left(i_{j} \in\{1, \ldots, 8\} \text { are } 6 \text { distinct indices }\right) \\
& \quad \pm\left(3 h-2 e_{i_{1}}-e_{i_{2}}-\cdots-e_{i_{8}}\right)\left(i_{j} \in\{1, \ldots, 8\} \text { distinct }\right)
\end{aligned}
$$

(b) Show that each of these elements can be represented by a sphere. (Hints: the degree genus formula tells you the genus of a generic complex curve in classes $h, 2 h, 3 h$ in $\mathbb{C P}^{2}$. Proper transforms do not change genus. For curves of the last type, instead of using a generic curve in class $3 h$, take a nodal curve and choose the blow-up of $e_{i_{1}}$ to occur at the node.)
(c) Show that classes of the form $h-e_{i}-e_{j}-e_{k}$ generate $\mathbb{Z}\left\langle\phi_{1}, \ldots, \phi_{8}\right\rangle$.

Recall from lecture that if K is a basic class, $K(x) \in\{-2,0,2\}$ for any class x represented by a -2 sphere. We want to show that $K(x)=0$ for all the classes we are considering. From what you just showed, it suffices to show that $K\left(h-e_{i}-e_{j}-e_{k}\right)=0$ for all $i, j, k \in\{1, \ldots, 8\}$ distinct.
(d) Suppose for contradiction that there exists a class $h-e_{i}-e_{j}-e_{k}$ such that $K\left(h-e_{i}-\right.$ $\left.e_{j}-e_{k}\right) \neq 0$. Without loss of generality, we can assume $K\left(h-e_{1}-e_{2}-e_{3}\right)=2$ (relabel the indices of the e_{i} and swap K for $-K$ if needed). Consider classes of the form $e_{1}-e_{i}$, $e_{2}-e_{j}$, and $e_{3}-e_{k}$ for $i, j, k \in\{4, \ldots, 8\}$ distinct.
(i) Show that if K evaluates to 2 on any of these classes, then there exists a class x represented by a sphere of square -2 such that $|K(x)|>2$ (a contradiction).
(ii) Show that if K evaluates to -2 on all three of these classes, then there exists a class x represented by a sphere of square -2 such that $|K(x)|>2$ (a contradiction).
(iii) Show that if K evaluates to 0 on all three of these classes, then there exists a class x represented by a sphere of square -2 such that $|K(x)|>2$ (a contradiction).
(iv) Give a case analysis of the possible values of K on $e_{i}-e_{j}$ for $i \in\{1,2,3\}, j \in$ $\{4,5,6,7,8\}$, to show that no matter what values K takes, there exists a class x represented by a sphere of square -2 such that $|K(x)|>2$ (a contradiction).

