MSRI SUMMER SCHOOL: 4-MANIFOLD CONSTRUCTIONS PROBLEM
SESSION 3

(1) Using the definition of B, as (#,-1CP?)\ C,, and the fact that 9B, is a lens space, show
that H;(B,; Q) = H;(B* Q). (You can use that for a lens space L, H;(L;Q) 2 Q if i = 0,3
and H;(L; Q) =0 for ¢ # 0,3.) If you have extra time, you can also try calculating H;(B);Z)
precisely with exact sequences, but you’ll need to keep track of more information about the
maps coming from the data of how C,, is embedded into #,_;CP?.

(2) In this problem, we will explore another example construction of an exotic 4-manifold using
rational blow-down. In E(4) there are nine disjoint sections of the elliptic fibration and each
section is a 2-sphere of self-intersection —4. Therefore, one or more of these —4-spheres has a
C5 neighborhood which can be rationally blown down. Let X; denote the manifold obtained
from F(4) by rationally blowing down the neighborhood of one of the —4-sphere sections o.

(a) What are the basic classes of F(4)? What are their Seiberg-Witten invariants?

(b) Given the embedding of Cy into FE(4) which sends the core (—4)-sphere to the section o,
determine what is the restriction of each basic class of E(4) to the boundary of C3? Note
that the meridian p of o is the generator of Hy(0Cs;Z) = Z4, so (via Poincare duality)
your answers should be written as some multiples of u.

(¢) Determine which basic classes on F(4) descend to basic classes on X; using the criteria
from lecture. Do the basic classes which descend from E(4) to X; have equivalent or
distinct images in Ha(E(4), C2) (which is identified by excision with Hs (X, 9X))? Using
the fact that there is a unique extension from (X, 9Xy) to X1, this determines whether
those basic classes descend to equal or distinct classes in X;. Using the Seiberg-Witten
formula for rational blow-down, determine the Seiberg-Witten invariants for each of these
descending classes, and write the Seiberg-Witten polynomial for Xj.

(d) Calculate the algebro-topological invariants of X;. Show that X; is simply-connected.
Determine b3 (X;) and b, (X;). Is the intersection form of X; even or odd? Using
Freedman’s theorem, what “standard” manifold is homeomorphic X;? Can you say that
X1 is exotic to (not diffeomorphic to) the standard manifold?

(e) If a 4-manifold admits a complex structure, there are certain holomorphic invariants that
turn out to only depend on the Euler characteristic and signature of the 4-manifold.
Motivated by the formulas for complex manifolds, we define:

A(X) = 30(X) + 2x(X)

x(X) = § (0(X) +x(X).
c2(X) represents the square of the first Chern class, and x;(X) is called the holomorphic
Euler characteristic. If X is a complex surface of general type, it satisfies the Noether
inequality:

2xn(X) — 6 < 2.
(The Enriques-Kodaira classification shows that all simply connected complex surfaces
which are not general type are either elliptic surfaces which share xy and o with some
E(n), or rational surfaces of the form CP?# yCP2.)
Prove that the manifold you obtained from one rational blow-down of F(4) violates the
Noether inequality and thus cannot be a complex surface of general type (since its Euler
characteristic and signature also differ from elliptic and rational surfaces, it cannot be
any simply connected complex surface). Note: X; does admit a symplectic structure, so
this gives an example of a symplectic 4-manifold which is not a complex surface.
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(f) Challenge: Using the blow-up formula and properties of its intersection form, can you
prove that X7 is not the blow-up of another smooth 4-manifold?

(3) This problem looks at Hy(L,;Z) using a surgery diagram, and then calculates the restrictions
of the classes E; to L, under the embedding of C, into E(n)#(p — 1)CP? that we saw in
lecture.

(a) The diagram below gives a handle diagram for C),, and correspondingly, a surgery diagram
for its boundary L.

Ky K1 Kz Ky 3 Ky
p+2 -2 =2
Mo /11 /12 /1p 3 Mp 2

There is a standard way to give a presentation for the first homology of a 3-manifold
presented as a surgery diagram, as described in [Gompf-Stipsicz Proposition 5.3.11], as
follows. The generators are the meridians p; of each component K; of the surgery link.
For each component K; with surgery coefficient p;/g; (in our case, all ¢; = 1), there is a
relation:
piti + a4 Y Ue(K;, Kj)p; = 0.
i#i

Using this surgery diagram of L,,, write out the presentation as described above, and then
simplify it: use the first p — 2 relations to inductively show that

pi = (G(p+1) + Do forj=1,...,p—2
and then plug into the last relation to show that Hi(Ly;Z) = Z,2

(b) Recall from the lecture that we described an embedding of C, into E(n)#(p — 1)CP?
which identifies the homology classes of the spheres generating Hy(C); Z) as follows

’LLOZF—QEl—EQ—Eg—-'-— p—1
Uj:Ej*Ej%»l j:].,,p72
For each F;, determine the intersection number of F; with each of ug, u1,...,u,—2. The
restriction of E; (or more precisely its Poincare dual in H?) to L, will be (Poincare dual
to)
p—2
EilL, = Z(Ez “Uj )
§=0

(The intersection of L, with a representative surface for E; will include one (positive/negatively

oriented) meridian of u; for each transverse intersection of E; with u;.) Find E;|r, for
i=1,...,p— 1 and show that these restrictions are the same for all ¢ in Hy(L;Z).



