MSRI SUMMER SCHOOL: 4-MANIFOLD CONSTRUCTIONS PROBLEM SESSION 3

(1) Using the definition of B_{p} as $\left(\#_{p-1} \mathbb{C P}^{2}\right) \backslash \bar{C}_{p}$, and the fact that ∂B_{p} is a lens space, show that $H_{i}\left(B_{p} ; \mathbb{Q}\right) \cong H_{i}\left(B^{4} ; \mathbb{Q}\right)$. (You can use that for a lens space $L, H_{i}(L ; \mathbb{Q}) \cong \mathbb{Q}$ if $i=0,3$ and $H_{i}(L ; \mathbb{Q})=0$ for $i \neq 0,3$.) If you have extra time, you can also try calculating $H_{i}\left(B_{p} ; \mathbb{Z}\right)$ precisely with exact sequences, but you'll need to keep track of more information about the maps coming from the data of how \bar{C}_{p} is embedded into $\#_{p-1} \mathbb{C P}^{2}$.
(2) In this problem, we will explore another example construction of an exotic 4-manifold using rational blow-down. In $E(4)$ there are nine disjoint sections of the elliptic fibration and each section is a 2 -sphere of self-intersection -4 . Therefore, one or more of these -4 -spheres has a C_{2} neighborhood which can be rationally blown down. Let X_{1} denote the manifold obtained from $E(4)$ by rationally blowing down the neighborhood of one of the -4 -sphere sections σ.
(a) What are the basic classes of $E(4)$? What are their Seiberg-Witten invariants?
(b) Given the embedding of C_{2} into $E(4)$ which sends the core (-4)-sphere to the section σ, determine what is the restriction of each basic class of $E(4)$ to the boundary of C_{2} ? Note that the meridian μ of σ is the generator of $H_{1}\left(\partial C_{2} ; \mathbb{Z}\right) \cong \mathbb{Z}_{4}$, so (via Poincare duality) your answers should be written as some multiples of μ.
(c) Determine which basic classes on $E(4)$ descend to basic classes on X_{1} using the criteria from lecture. Do the basic classes which descend from $E(4)$ to X_{1} have equivalent or distinct images in $H_{2}\left(E(4), C_{2}\right)$ (which is identified by excision with $H_{2}\left(X_{0}, \partial X_{0}\right)$)? Using the fact that there is a unique extension from $\left(X_{0}, \partial X_{0}\right)$ to X_{1}, this determines whether those basic classes descend to equal or distinct classes in X_{1}. Using the Seiberg-Witten formula for rational blow-down, determine the Seiberg-Witten invariants for each of these descending classes, and write the Seiberg-Witten polynomial for X_{1}.
(d) Calculate the algebro-topological invariants of X_{1}. Show that X_{1} is simply-connected. Determine $b_{2}^{+}\left(X_{1}\right)$ and $b_{2}^{-}\left(X_{1}\right)$. Is the intersection form of X_{1} even or odd? Using Freedman's theorem, what "standard" manifold is homeomorphic X_{1} ? Can you say that X_{1} is exotic to (not diffeomorphic to) the standard manifold?
(e) If a 4-manifold admits a complex structure, there are certain holomorphic invariants that turn out to only depend on the Euler characteristic and signature of the 4 -manifold. Motivated by the formulas for complex manifolds, we define:

$$
\begin{gathered}
c_{1}^{2}(X)=3 \sigma(X)+2 \chi(X) \\
\chi_{h}(X)=\frac{1}{4}(\sigma(X)+\chi(X)) .
\end{gathered}
$$

$c_{1}^{2}(X)$ represents the square of the first Chern class, and $\chi_{h}(X)$ is called the holomorphic Euler characteristic. If X is a complex surface of general type, it satisfies the Noether inequality:

$$
2 \chi_{h}(X)-6 \leq c_{1}^{2} .
$$

(The Enriques-Kodaira classification shows that all simply connected complex surfaces which are not general type are either elliptic surfaces which share χ and σ with some $E(n)$, or rational surfaces of the form $\mathbb{C P}^{2} \#_{N} \overline{\mathbb{C P}}^{2}$.)
Prove that the manifold you obtained from one rational blow-down of $E(4)$ violates the Noether inequality and thus cannot be a complex surface of general type (since its Euler characteristic and signature also differ from elliptic and rational surfaces, it cannot be any simply connected complex surface). Note: X_{1} does admit a symplectic structure, so this gives an example of a symplectic 4-manifold which is not a complex surface.
(f) Challenge: Using the blow-up formula and properties of its intersection form, can you prove that X_{1} is not the blow-up of another smooth 4-manifold?
(3) This problem looks at $H_{1}\left(L_{p} ; \mathbb{Z}\right)$ using a surgery diagram, and then calculates the restrictions of the classes E_{i} to L_{p} under the embedding of C_{p} into $E(n) \#(p-1) \overline{\mathbb{C P}}^{2}$ that we saw in lecture.
(a) The diagram below gives a handle diagram for C_{p}, and correspondingly, a surgery diagram for its boundary L_{p}.

There is a standard way to give a presentation for the first homology of a 3-manifold presented as a surgery diagram, as described in [Gompf-Stipsicz Proposition 5.3.11], as follows. The generators are the meridians μ_{i} of each component K_{i} of the surgery link. For each component K_{i} with surgery coefficient p_{i} / q_{i} (in our case, all $q_{i}=1$), there is a relation:

$$
p_{i} \mu_{i}+q_{i} \sum_{j \neq i} l k\left(K_{i}, K_{j}\right) \mu_{j}=0 .
$$

Using this surgery diagram of L_{p}, write out the presentation as described above, and then simplify it: use the first $p-2$ relations to inductively show that

$$
\mu_{j}=(j(p+1)+1) \mu_{0} \quad \text { for } j=1, \ldots, p-2
$$

and then plug into the last relation to show that $H_{1}\left(L_{p} ; \mathbb{Z}\right) \cong \mathbb{Z}_{p^{2}}$.
(b) Recall from the lecture that we described an embedding of C_{p} into $E(n) \#(p-1) \overline{\mathbb{C P}}^{2}$ which identifies the homology classes of the spheres generating $H_{2}\left(C_{p} ; \mathbb{Z}\right)$ as follows

$$
\begin{gathered}
u_{0}=F-2 E_{1}-E_{2}-E_{3}-\cdots-E_{p-1} \\
u_{j}=E_{j}-E_{j+1} \quad j=1, \cdots, p-2
\end{gathered}
$$

For each E_{i}, determine the intersection number of E_{i} with each of $u_{0}, u_{1}, \ldots, u_{p-2}$. The restriction of E_{i} (or more precisely its Poincare dual in H^{2}) to L_{p} will be (Poincare dual to)

$$
\left.E_{i}\right|_{L_{p}}=\sum_{j=0}^{p-2}\left(E_{i} \cdot u_{j}\right) \mu_{j} .
$$

(The intersection of L_{p} with a representative surface for E_{i} will include one (positive/negatively oriented) meridian of u_{j} for each transverse intersection of E_{i} with u_{j}.) Find $\left.E_{i}\right|_{L_{p}}$ for $i=1, \ldots, p-1$ and show that these restrictions are the same for all i in $H_{1}\left(L_{p} ; \mathbb{Z}\right)$.

