
MSRI SUMMER SCHOOL: 4-MANIFOLD CONSTRUCTIONS PROBLEM

SESSION 3

(1) Using the definition of Bp as (#p−1CP2) \ Cp, and the fact that ∂Bp is a lens space, show
that Hi(Bp;Q) ∼= Hi(B

4;Q). (You can use that for a lens space L, Hi(L;Q) ∼= Q if i = 0, 3
and Hi(L;Q) = 0 for i ̸= 0, 3.) If you have extra time, you can also try calculating Hi(Bp;Z)
precisely with exact sequences, but you’ll need to keep track of more information about the
maps coming from the data of how Cp is embedded into #p−1CP2.

(2) In this problem, we will explore another example construction of an exotic 4-manifold using
rational blow-down. In E(4) there are nine disjoint sections of the elliptic fibration and each
section is a 2-sphere of self-intersection −4. Therefore, one or more of these −4-spheres has a
C2 neighborhood which can be rationally blown down. Let X1 denote the manifold obtained
from E(4) by rationally blowing down the neighborhood of one of the −4-sphere sections σ.
(a) What are the basic classes of E(4)? What are their Seiberg-Witten invariants?
(b) Given the embedding of C2 into E(4) which sends the core (−4)-sphere to the section σ,

determine what is the restriction of each basic class of E(4) to the boundary of C2? Note
that the meridian µ of σ is the generator of H1(∂C2;Z) ∼= Z4, so (via Poincare duality)
your answers should be written as some multiples of µ.

(c) Determine which basic classes on E(4) descend to basic classes on X1 using the criteria
from lecture. Do the basic classes which descend from E(4) to X1 have equivalent or
distinct images in H2(E(4), C2) (which is identified by excision with H2(X0, ∂X0))? Using
the fact that there is a unique extension from (X0, ∂X0) to X1, this determines whether
those basic classes descend to equal or distinct classes in X1. Using the Seiberg-Witten
formula for rational blow-down, determine the Seiberg-Witten invariants for each of these
descending classes, and write the Seiberg-Witten polynomial for X1.

(d) Calculate the algebro-topological invariants of X1. Show that X1 is simply-connected.
Determine b+2 (X1) and b−2 (X1). Is the intersection form of X1 even or odd? Using
Freedman’s theorem, what “standard” manifold is homeomorphic X1? Can you say that
X1 is exotic to (not diffeomorphic to) the standard manifold?

(e) If a 4-manifold admits a complex structure, there are certain holomorphic invariants that
turn out to only depend on the Euler characteristic and signature of the 4-manifold.
Motivated by the formulas for complex manifolds, we define:

c21(X) = 3σ(X) + 2χ(X)

χh(X) =
1

4
(σ(X) + χ(X)) .

c21(X) represents the square of the first Chern class, and χh(X) is called the holomorphic
Euler characteristic. If X is a complex surface of general type, it satisfies the Noether
inequality:

2χh(X)− 6 ≤ c21.

(The Enriques-Kodaira classification shows that all simply connected complex surfaces
which are not general type are either elliptic surfaces which share χ and σ with some
E(n), or rational surfaces of the form CP2#NCP2.)
Prove that the manifold you obtained from one rational blow-down of E(4) violates the
Noether inequality and thus cannot be a complex surface of general type (since its Euler
characteristic and signature also differ from elliptic and rational surfaces, it cannot be
any simply connected complex surface). Note: X1 does admit a symplectic structure, so
this gives an example of a symplectic 4-manifold which is not a complex surface.
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(f) Challenge: Using the blow-up formula and properties of its intersection form, can you
prove that X1 is not the blow-up of another smooth 4-manifold?

(3) This problem looks at H1(Lp;Z) using a surgery diagram, and then calculates the restrictions

of the classes Ei to Lp under the embedding of Cp into E(n)#(p − 1)CP2 that we saw in
lecture.
(a) The diagram below gives a handle diagram for Cp, and correspondingly, a surgery diagram

for its boundary Lp.

There is a standard way to give a presentation for the first homology of a 3-manifold
presented as a surgery diagram, as described in [Gompf-Stipsicz Proposition 5.3.11], as
follows. The generators are the meridians µi of each component Ki of the surgery link.
For each component Ki with surgery coefficient pi/qi (in our case, all qi = 1), there is a
relation:

piµi + qi
∑
j ̸=i

lk(Ki,Kj)µj = 0.

Using this surgery diagram of Lp, write out the presentation as described above, and then
simplify it: use the first p− 2 relations to inductively show that

µj = (j(p+ 1) + 1)µ0 for j = 1, . . . , p− 2

and then plug into the last relation to show that H1(Lp;Z) ∼= Zp2 .

(b) Recall from the lecture that we described an embedding of Cp into E(n)#(p − 1)CP2

which identifies the homology classes of the spheres generating H2(Cp;Z) as follows
u0 = F − 2E1 − E2 − E3 − · · · − Ep−1

uj = Ej − Ej+1 j = 1, · · · , p− 2.

For each Ei, determine the intersection number of Ei with each of u0, u1, . . . , up−2. The
restriction of Ei (or more precisely its Poincare dual in H2) to Lp will be (Poincare dual
to)

Ei|Lp
=

p−2∑
j=0

(Ei · uj)µj .

(The intersection of Lp with a representative surface for Ei will include one (positive/negatively
oriented) meridian of uj for each transverse intersection of Ei with uj .) Find Ei|Lp

for
i = 1, . . . , p− 1 and show that these restrictions are the same for all i in H1(Lp;Z).


