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1. Introduction

Topology is centered around a simple problem: classify shapes and spaces, without paying strict
attention to the angles and distances of the space. While topologists can typically ignore many of
the details of the geometry of a space, and ask broader questions, there are times when geometric
structures can tell us something about a space from a topological perspective. Conversely, many
geometric problems can be answered using purely topological techniques. Contact topology exempli-
fies this unexpected relationship. While originally contact structures were studied as rigid geometric
objects, significant advances have been made by looking at them from a topological perspective. In
the other direction, the geometry of contact structures can be used to answer important questions
in topology.

For many decades, contact structures were viewed as strictly geometric and analytic structures.
They originally arose as solutions to differential equations that arose in various applications including
optics, thermodynamics, and control-theory. Many of the known theorems from before the 1980s
were proven by solving equations and making tricky geometric arguments. This changed dramatically
with the development of new topological ways of thinking about contact structures.

A contact structure on a space associates a plane to each point in the space, such that the planes
vary smoothly as one moves through different points in space, and the planes are always twisting in
some direction so that a non-integrability condition is satisfied. The exact definition will be given
in the next section which introduces much of the basic terminology and essential theorems.

The first change in the study of contact topology that I will discuss is Giroux’s theory of convex
surfaces. This new theory allowed mathematicians to keep track of significantly fewer details, without
losing any meaningful information about the contact structure. It reduced a rigid set of geometric
data to a flexible set of topological data. This made it possible to employ “cut-and-paste” techniques,
which are often utilized by topologists. By cutting the space into basic building blocks, and looking
at Giroux’s reduced information about the contact structure along the boundary surfaces where the
cuts were made, one can make very strong assertions about the entire contact structure.

It is quite impressive how much one can prove about a space given relatively little data. In sections
3-5 of this paper, I will look at how we can use these cut-and-paste techniques to say something about
Legendrian and transverse knots, mathematical knots that satisfy certain properties with respect to
the contact structure. A mathematical knot is simply a closed loop that can be knotted up in any
way, before attaching the two ends together. A Legendrian knot is a knot in the space which always
just brushes tangentially against each of the planes in the contact structure. A transverse knot is
one which goes through the contact plane at each point.

There has been considerable work in the study of mathematical knots in the last century. Knot
theory seeks to classify mathematical knots up to isotopy (meaning that two knots are equivalent
if they can be stretched, contracted, tangled, and untangled until that they are identical without
breaking open the closed loop). While mathematicians can play with knot diagrams for years to
attempt to stretch and untangle two knots in all possible ways they can think of, they need a rigorous
mathematical proof to ensure that two knots are actually distinct. The way mathematicians prove
such things is by using knot invariants. A knot invariant is a mathematical object associated to a
knot, that will always have the same value for two pictures of equivalent knots, regardless of how
different the pictures may look.

In the context of contact topology, we look only at subclasses of knots: Legendrian or transverse,
and impose a stronger equivalence relation. Two Legendrian (resp. transverse) knots are equiv-
alent (Legendrian (resp. transversely) isotopic) if through stretching, contracting, tangling, and
untangling we can get from one to the other where the knots remain Legendrian (resp. transverse)
during the stretching, etc. The contact structure puts restrictions on which knots are Legendrian
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and transverse. Thus, knowing something about the Legendrian or transverse knots can provide
information about a contact structure and the space it is on. While my focus will be on the study
of Legendrian and transverse knots in the standard contact structure on the standard Euclidean
space R3 or the three sphere S3, these results can be applied to obtain information about more gen-
eral contact manifolds (through surgery along Legendrian and transverse knots). It is important to
keep in mind that these seemingly restricted results are part of a larger conversation about contact
structures and their applications.

In this paper we explore techniques to begin to classify Legendrian and transverse knots. We
first introduce the “classical invariants” which essentially count the number of times contact planes
twist in different ways as one moves along the knot. These invariants provide a fairly simple way
to distinguish different classes of Legendrian and transverse knots. However, for many years, it was
difficult to tell whether these invariants were all that was needed for the classification, or whether
there were more intricate details. The question can be formulated as: are there two Legendrian
(resp. transverse) knots which have the same topological knot type and same values for their classical
invariants, which are not Legendrian (resp. transversely) isotopic? A mathematical knot type which
has two such Legendrian (resp. transverse) knots will be called Legendrian (resp. transversely)
nonsimple.

Examples of Legendrian knot classes that were not completely determined by general knot type
and the classical invariants, were first discovered through new invariants developed by Chekanov
[3] right near the turn of the millenium. However, Chekanov’s invariants were incapable of finding
transverse knots which were not determined by classical invariants. Until about 2007 it remained a
mystery whether there were any such examples of transverse knots. In 2007 two different techniques
were employed to discover examples of transversely nonsimple knots. One of these methods was the
cut-and-paste techniques utilizing convex surface theory. This was carried out by Etnyre and Honda
in a series of papers that concluded with a definitive proof of the existence of certain transversely
nonsimple knots. These results and techniques are covered in sections 4 and 5. Near the same time,
Birman and Menasco used techniques in braid theory to classify certain transverse knots, resulting
in the discovery of another set of transversely nonsimple knots.

These results were significant breakthroughs, but there are limitations to the scope of the tech-
niques used. They are only effective in knots satisfying certain patterns, or with limited complexity.
However the knowledge that transversely nonsimple knots could be found lead to a search for other
invariants of Legendrian and transverse knots through more algebraic methods. A number of pow-
erful algebraic invariants were introduced in general knot theory in the last decade, and recently
there have been efforts to apply these methods to find Legendrian and transverse knot invariants.
Plamenevskaya discovered one such invariant [25] by looking at Khovanov homology (a relatively
new and powerful invariant in knot theory). While this invariant has useful relations to other as-
pects of contact topology, unfortunately there are no known examples on which it is able to identify
transversely nonsimple knots. Ozsváth, Szabó, and Thurston defined another transverse invariant
using combinatorial knot Floer homology [24]. This has turned out to be quite effective at finding
transversely nonsimple knots [22]. I will discuss this invariant and its implications in the last section
of this paper.

While significant advances have been made in the last five years in the classification of Legendrian
and transverse knots, there is still considerable work to be done in identifying exactly how and
why knots are distinguished by these new invariants. We would like to understand when these
invariants are effective at identifying nonsimple knots, and why certain invariants are effective in
certain situations. Once we understand the relations between these invariants, we will have a broader
understanding of the classification of Legendrian and transverse knots. This will feed into more
general advances in contact topology, which can be applied to find new solutions to problems in
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topology and in the fields of mechanics, optics, and dynamics which originally motivated the study
of contact structures.

The purpose of this paper is to give an introduction to the study of contact topology through these
significant turning points in methodology and to bring diverse techniques together to begin the search
for connections between these methods. Along the way we supply more details than can be found in
the literature, and discuss some slight generalizations of the results obtained by geometric methods.
The next section provides an overview of some of the important concepts in contact topology. For the
reader with no previous knowledge of contact topology, further introductory material can be found
in Etnyre’s lecture notes [7], [8] or An Introduction to Contact Topology by Geiges [11]. The third
section introduces more of the geometric tools. The fourth section establishes some conventions and
proves some classification results using these geometric tools. The fifth section proves that positive
cables of the (2, 3) torus knot are transversely non-simple, a slight generalization of the proof by
Etnyre and Honda. The sixth section introduces algebraic tools used to define effective transverse
invariants, and the last section discusses how to use these tools to find examples of transversely
nonsimple knots. After estabilishing the basics of contact topology, the reader can look either at the
algebraic or the geometric sections first, although one’s appreciation of the algebraic invariants and
intuition for how to apply them will be better established after learning the geometric cut-and-paste
techniques.
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2. Contact Topology Basics

This section summarizes the basic definitions of contact topology and introduces some of the
powerful theorems that provide a base of tools for doing contact topology. Many of these theorems
have technical proofs with a different flavor than the proofs in the main sections of this thesis. Some
of these proofs have been included, some simply sketched, and some omitted. It is not necessary to
look up these proofs to understand the rest of the paper, but for those wishing to learn more of the
detailed background there are a few introductory sources which include these proofs, including the
book by Geiges [11], and the lecture notes by Etnyre [7], [8].

2.1. What is a contact structure? A contact structure is a field of hyperplanes on an odd
dimensional manifold that satisfies a certain twisting condition, or non-integrability condition. We
will formalize this concept through a few definitions. First, some notation. If M is a manifold, for
each p ∈M , TpM is the tangent space to M at p and TM = ∪p∈MTpM is the tangent bundle of M .

Definition 1. A hyperplane field ξ on M is a smooth subbundle of the tangent bundle TM such
that ξp = TpM ∩ ξ is a vector space of codimension 1 in TpM .

Note that we can locally define ξ as the kernel of a 1-form by the following argument. Choose
a Riemannian metric g on M which provides an inner product gp(·, ·) on each tangent space that
varies smoothly with p ∈ M . Then we can define ξ⊥, which will be a line-bundle over M , and
is thus trivializable on a local neighborhood U . Let X be a non-zero vector field over U in ξ⊥|U .
Using this trivialization, we can define αU = g(X, ·) on U . Then at any point p ∈ M , and for any
vp ∈ ξp, αU (p)(vp) = gp(Xp, vp) = 0 since Xp is orthogonal to vp. Conversely if αU (q)(wq) = 0
then gq(Xq, wq) = 0 so wq is orthogonal to Xq. Since ξ⊥q is one-dimensional, it is spanned by Xq so
wq ∈ (ξ⊥q )⊥ = ξq. Thus ker(αU ) = ξ|U .

Furthermore, if ξ is co-orientable, meaning that TM/ξ is orientable and thus trivial (since it is a
line bundle), then there is a global 1-form α such that ker(α) = ξ.

Finally, notice that α only uniquely defined for ξ if we mod out by multiplication of α by a nonzero
function f : M → R.

Definition 2. Suppose dimM = 2n+1. A hyperplane field ξ is said to be maximally non-integrable
if for every 1-form α such that α = ξ (locally or globally) we have that

α ∧ (dα)n 6= 0

(where 6= 0 means is never 0). Namely, α ∧ (dα)n is a volume form on M . In this case ξ is called
a contact structure on M . The pair (M, ξ) is called a contact manifold.

Note that the term maximally non-integrable comes from the fact that there is no integral sub-
manifold of ξ, a manifold whose tangent bundle coincides with ξ. Furthermore, there is not even a
submanifold whose tangent bundle agrees with ξ on a small neighborhood of M .

Although we have defined contact structures for a general odd-dimensional manifold, for the
rest of this paper we will focus on co-orientable 3-dimensional manifolds. In this case, the contact
structure ξ will be a field of 2-dimensional planes such that ξ = kerα and α ∧ dα 6= 0.

We also want a way to classify contact structures up to some kind of equivalence relation. The
relevant equivalence relation is whether two contact manifolds are contactomorphic.
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Figure 1. The standard contact structure on R3.

Definition 3. A contactomorphism from (M, ξ) to (M ′, ξ) is a diffeomorphism φ : M → M ′ such
that for all p ∈M , dφp(ξp) = ξ′φ(p). If there is such a contactomorphism between (M, ξ) and (M ′, ξ′)
we say the are contactomorphic.

2.2. Examples.

2.2.1. The standard contact structure on R3. Consider R3 with standard coordinates (x, y, z) and
α = dz − ydx. Since

α ∧ dα = (dz + xdy) ∧ (dx ∧ dy) = dx ∧ dy ∧ dz 6= 0

ξ = kerα is a contact structure on R3. This is known as the standard contact structure on R3 and
is denoted (R3, ξstd). The planes are horizontal (orthogonal to ∂

∂z ) at x = 0 and they rotate as x
increases or decreases limiting towards vertical planes as x→ ±∞. See figure 1. At a point (x, y, z)
the contact plane is spanned by { ∂∂x ,−x

∂
∂z + ∂

∂y}.
In other literature, the standard contact structure is given as ξ′ = ker(dz−ydx) which is spanned

by { ∂∂y , y
∂
∂z + ∂

∂x}. This is not a problem because (R3, ξstd) is contactomorphic to (R3, ξ′) via
φ : (R3, ξstd)→ (R3, ξ′) where φ(x, y, z) = (y,−x, z) = (x′, y′, z′). Indeed this is a contactomorphism
because

dφ(x,y,z)

(
∂

∂x

)
=

 0 −1 0

1 0 0

0 0 1


 1

0

0

 =

 0

1

0

 =
∂

∂y′

and

dφ(x,y,z)

(
−x ∂

∂z
+

∂

∂y

)
=

 0 −1 0

1 0 0

0 0 1


 0

−1

x

 =

 1

0

x

 = x
∂

∂z′
+

∂

∂x′
= y′

∂

∂z′
+

∂

∂x′
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Figure 2. The rotationally symmetric contact structure on R3

2.2.2. The rotationally symmetric contact structure on R3. We can also take a radially symmetric
contact structure on R3, by letting αrot = dz− ydx+xdy. Letting ξrot = ker(αrot), (R3, ξrot) is also
a contact structure since

α ∧ dα = (dz − ydx+ xdy) ∧ (−dy ∧ dx+ dx ∧ dy) = 2dx ∧ dy ∧ dz 6= 0

In this case the planes at x = y = 0 are horizontal, and they twist out radially, limiting towards
vertical planes as the radius limits to infinity, as in figure 2. The contact plane at (x, y, z) is spanned
by {x ∂

∂x + y ∂
∂y , y

∂
∂z + ∂

∂x} when y 6= 0, by {x ∂
∂x + y ∂

∂y , x
∂
∂z −

∂
∂y} when x 6= 0, and by { ∂∂x ,

∂
∂y}

when x = y = 0.
This is also contactomorphic to the standard contact structure via φ : (R3, ξrot) → (R3, ξstd)

defined by φ(x, y, z) = (2y,−x, xy + z) = (x′′, y′′, z′′) ∈ (R3, ξstd). Then

dφ(x,y,z)

(
x
∂

∂x
+ y

∂

∂y

)
=

 0 2 0

−1 0 0

y x 1


 x

y

0



=

 2y

−x
2xy


= 2y

∂

∂x′′
− x ∂

∂y′′
+ 2xy

∂

∂z′′

= x′′
∂

∂x′′
+ y′′

(
∂

∂y′′
− x′′ ∂

∂z

)



7

dφ(x,y,z)

(
y
∂

∂z
+

∂

∂x

)
=

 0 2 0

−1 0 0

y x 1


 1

0

y



=

 0

−1

2y


= 2y

∂

∂z′′
− ∂

∂y′′

= −
(

∂

∂y′′
− x′′ ∂

∂z′′

)
So

dφ((ξrot)(x,y,z)) = span
{
x′′

∂

∂x′′
+ y′′

(
∂

∂y′′
− x′′ ∂

∂z

)
,−
(

∂

∂y′′
− x′′ ∂

∂z′′

)}
= span

{
∂

∂x′′
,
∂

∂y′′
− x′′ ∂

∂z′′

}
= (ξstd)φ(x,y,z)

So indeed φ is a contactomorphism from (R3, ξrot) to (R3, ξstd). Therefore we are justified in inter-
changing the two contact structures when referring to the standard contact structure on R3.

2.2.3. The standard contact structure on S3. Now we would like to extend the standard contact
structure on R3 to S3. View S3 as the subset of R4 with coordinates (x1, y1, x2, y2) satisfying
x2

1 + y2
1 + x2

2 + y2
2 = 1. Let

α = (x1dy1 − y1dx1 + x2dy2 − y2dx2)|S3

and let ξ = kerα. An equivalent way to define this contact structure is through the complex
structure on R4 = C2. Let J be the complex structure given by J(xi) = yi, J(yi) = −xi. Let
f = x2

1 + x2
2 + y2

1 + y2
2 . Then S3 = f−1(1) so

T(x1,y1,x2,y2)S
3 = ker(df(x1,y1,x2,y2)) = ker(x1dx1 + y1dy1 + x2dx2 + y2dy2)

I claim that ξ = T(x1,y1,x2,y2)S
3 ∩ J(T(x1,y1,x2,y2)S

3).
First note that for v ∈ T(x1,y1,x2,y2)S

3, v ∈ J(T(x1,y1,x2,y2)S
3)

⇐⇒ −Jv ∈ ker(df(x1,y1,x2,y2))

⇐⇒ df(x1,y1,x2,y2) ◦ −J(v) = 0

⇐⇒ v ∈ ker(df(x1,y1,x2,y2) ◦ J)

So T(x1,y1,x2,y2)S
3 ∩ J(T(x1,y1,x2,y2)S

3) = ker(df(x1,y1,x2,y2) ◦ J). However

df(x1,y1,x2,y2) ◦ J = −2x1dy1 + 2y1dx1 − 2x2dy2 + 2y2dx2 = 2α

so ξ = T(x1,y1,x2,y2)S
3 ∩ J(T(x1,y1,x2,y2)S

3). Furthermore, we can check this is a contact structure
and it is an extension of the standard contact structure on R3.

First we check that this is a contact structure:

α ∧ dα = (x1dy1 − y1dx1 + x2dy2 − y2dx2) ∧ (2dx1 ∧ dy1 + 2dx2 ∧ dy2)
= 2(x1dy1 ∧ dx2 ∧ dy2 − y1dx1 ∧ dx2 ∧ dy2 + x2dx1 ∧ dy1 ∧ dy2 − y2dx1 ∧ dy1 ∧ dx2)
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Note that x1
∂
∂x1

+ y1
∂
∂y1

+ x2
∂
∂x2

+ y2
∂
∂y2
∈ ker(α ∧ dα). Then at any (x1, y1, x2, y2) ∈ S3, ker(α ∧

dα)(x1,y1,x2,y2) is a linear one dimensional subspace of the tangent space so

ker(α ∧ dα)(x1,y1,x2,y2) = span(x1
∂

∂x1
+ y1

∂

∂y1
+ x2

∂

∂x2
+ y2

∂

∂y2
) = (T(x1,y1,x2,y2)S

3)⊥

and thus α ∧ dα is nonvanishing on TS3.
By deleting a point and then taking the stereographic projection, one can similarly compute that

(S3 \ {p}, ξ|S3\{p}) is contactomorphic to (R3, ξstd).

2.3. Tight and Overtwisted Contact Structures. A division between two types of contact
structures was developed as more became known about contact structures. This is the classification
of contact structures as tight or overtwisted.

Definition 4. A contact manifold (M, ξ) is overtwisted if there exists an embedded disk D ⊂ M

such that TpD = ξp for every p ∈ ∂D (D is called an overtwisted disk). A contact manifold is tight
if it is not overtwisted.

An example of an overtwisted contact manifold is (R3, ξo), ξ = ker(cos rdz + r sin rdθ) (in cylin-
drical coordinates on R3 (r, θ, z)). In this case, the contact planes twist radially, but the con-
tact planes are horizontal i.e. ξ = ker(±dz) whenever r = nπ, n ∈ Z+. Therefore a flat disk
D = {z = 0} ∩ {r ≤ π} has tangent space ker(dz) at every point, and thus the tangent planes
coincide with the contact planes along ∂D. Therefore (R3, ξo) is overtwisted. It is true, though
considerably more difficult to prove that the standard contact structure on R3 (and its extension to
S3) is tight.

The reason that we are interested in the distinction between tight and overtwisted contact struc-
tures is because overtwisted contact structures are essentially classified by their homotopy type.
This is given by the following significant theorem of Eliashberg.

Theorem 1 (Eliashberg [5]). Let M be a closed, compact 3-manifold. Let H be the set of homotopy
classes of oriented plane fields on M and C0 be the set of isotopy classes of oriented overtwisted
contact structures on M . The inclusion map C0 into H gives a homotopy equivalence.

Because we have a reasonably good hold on how to classify overtwisted contact structures, the
more interesting contact manifolds to investigate are the tight ones. There are examples of tight
contact structures which disallow Eliashberg’s result from extending to all contact structures. We
must use more subtle geometric techniques to classify tight contact structures. Most of the techniques
discussed in this paper will involve cutting and pasting pieces of contact manifolds, and will rely
heavily on the theory of convex surfaces, which will be introduced later in this chapter.

There is a stronger condition one can ask of a contact manifold than simply being tight:

Definition 5. A contact manifold (M, ξ) is universally tight if its universal cover (M̃, ξ̃) is tight.
M̃ is simply the universal cover of M in the topological sense, and ξ̃ is obtained by pulling back ξ
along the covering map π : M̃ →M .

There are certain contact structures which become overtwisted when pulled back to a cover, but
if a contact manifold has a tight cover then it must be tight. This implies that every cover of a
contact manifold that is universally tight is tight. Some of the classifications results of tight contact
structures on 3-manifolds include a description of which contact structures are universally tight.
This allows us to look at covering spaces of contact manifolds to understand the base space, which
can be useful if the cover is a simpler contact manifold to classify.
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Figure 3. Changing a knot diagram to a Legendrian front projection.

2.4. Legendrian and Transverse knots in (R3, ξstd). In addition to classifying contact structures
on 3-manifolds up to contactomorphism, we can also classify certain classes submanifolds of a contact
manifold up to isotopy within that class. By understanding knots in (R3, ξstd) (or equivalently
(S3, ξstd)) which preserve some information about the contact structure, we gain a considerable
amount of information about general contact three-manifolds. There are two kinds of knots, which
keep track of some of the information of the contact structure: Legendrian knots and transverse
knots.

Definition 6. A knot K in (M, ξ) is Legendrian if TpK ⊂ (ξ)p for all p ∈ K; i.e. the knot is
everywhere tangent to the contact planes.
K is transverse if TpK t (ξ)p for all p ∈ K and TpK and K intersects ξ positively; i.e. the

knot is never tangent to the contact planes, and the orientation of its tangent vector agrees with the
normal orientation to ξ.

Definition 7. Two Legendrian (resp. transverse) knots K,K ′ are Legendrian (resp. transversely)
isotopic if there is a one-parameter family of Legendrian (resp. transverse) knots Kt, t ∈ [0, 1] such
that K0 = K and K1 = K ′.

It is often convenient to look at projections of knots onto R2. In (R3, ξstd) there are two fairly
natural projections to consider. The first is the front projection which sends (x, y, z) to (y, z).

Recall that the contact planes are given by ker(dz + xdy). Since a Legendrian knot is tangent to
the contact planes, the value of the x coordinate is completely determined by the slope in the (y, z)
projection:

(1) x = −dz
dy

The only slope that is not allowable in the front projection of a Legendrian knot is a completely
vertical slope. Furthermore whenever we have a crossing, the larger slope must pass under the
smaller slope because of equation 1. The only kind of singularities allowable for the projection of
a smooth knot are cusps with well-defined tangent spaces and transverse crossings. If we want to
turn a general knot diagram into a Legendrian knot diagram, we can do this by changing vertical
slopes to cusps and adjusting crossings as in figure 3. Note also that we can make these adjustments
arbitrarily small, meaning that we can C0 approximate any knot by a Legendrian knot.

There are Legendrian Reidemeister moves for the front projection. It is possible to get from
any Legendrian front projection to any other Legendrian front projection of a Legendrian isotopic
knot through these Legendrian Reidemeister moves together with isotopy within Legendrian front
projections. These moves are given in figure 4. This shows that any knot can be realized as a
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Figure 4. Legendrian Reidemeister moves for the front projection

Figure 5. We can find a Legendrian knot arbitrarily close to any knot in R3 by
approximating it with sprials which appear here as zig-zags in the front projection.

Legendrian knot. Furthermore, any knot in R3 can be C0 approximated by a Legendrian knot. To
do this we add zig-zags in the front projection which spiral around the knot in R3 as in figure 5.

In the case of transverse knots we have only an inequality for the x value:

(2) x > −dz
dy

Therefore a transverse knot is not completely determined by its front projection, however it is
determined up to transverse isotopy. The front projection of a transverse knot can never have
vertical slopes pointing downwards (since any lift to R3 would have negative intersection number
with all contact planes). If the front projection of a transverse knot has oriented tangent vector
a ∂
∂x −

∂
∂z there are restrictions on the x coordinate of the transverse knot in (R3, ξstd). If a > 0

then x > a and if a < 0 then x < a. This determines which is the overcrossing if two such
segments, one where a > 0 and the other where a < 0, cross. Figure 6 shows these disallowed
choices. Furthermore we cannot have cusps in the front projection of transverse knots since this
would indicate that the tangent vector to the transverse knot at the point projecting to the cusp
is a ∂

∂x , which is not transverse to any contact plane. Thus the only allowable singularities in front
projections of transverse knots are isolated double points from crossings.

There are only two transverse Reidemeister moves in the front projection (since there is no way
to add in a Reidemeister I twist without having a cusp or downward pointing tangent vector). These
are given by figure 7.

The second useful projection of knots in (R3, ξstd) is the Lagrangian projection which sends (x, y, z)
to (x, y). While Lagrangian projections are incredibly useful in certain contexts (e.g. Chekanov’s
combinatorial contact homology invariant of Legendrian knots [3]), we will primarily use the La-
grangian projection simply to give another perspecitve from which to view a knot. Lagrangian



11

Figure 6. Segments that cannot show up in the front projection of a transverse knot.

Figure 7. Transverse Reidemeister moves in the front projection

diagrams are slightly more problematic to work with because it is difficult to recognize which dia-
grams are allowable as Lagrangian projections of Legendrian or transverse knots.

2.5. Classical invariants of Legendrian and transverse knots. There are two invariants of
Legendrian knots and one of transverse knots that are reasonably simple to compute and use to
distinguish Legendrian or transverse knots of the same topological knot type. For Legendrian knots
these invariants are the Thurston-Benniquin number, tb, and the rotation number, r. For transverse
knots we have the self-linking number. The Thurston-Benneqin number essentially measures the
twisting of the contact planes around the Legendrian knot, with respect to the framing induced by
a Seifert surface. The rotation number counts the number of times the direction of the Legendrian
knot rotates around in a trivialization of the contact planes on a Seifert surface for K. The self-
linking number of a transverse knot is the linking number of K with a pushoff in a direction of the
contact planes. The formal definitions of these “classical invariants” follow.

Definition 8. Let K be a Legendrian knot, and let Σ be a Seifert surface for K. Let X be a vector
field on K which is transverse to ξ and let K ′ be the pushoff of K in the direction determined by X.
Then the Thurston-Bennequin number tb(K) is the signed intersection number of K ′ with Σ.

Equivalently, let ν be the normal bundle to K. Then ν ∩ ξ|K is a line bundle. Then tb(K) is the
twisting of this line bundle with respect to the Seifert framing. More generally, the twisting of K
relative a given framing F , t(K,F ) is the twisting of ν ∩ ξ|K with respect to F .

Definition 9. Let K be Legendrian and Σ a Seifert surface. Then we can find a trivialization of
ξ|Σ ∼= Σ×R2. This induces a map φ : K → R2 \ 0 which sends p ∈ K to the oriented tangent vector
to K which lies in ξp which is identified with R2 under the trivialization. The rotation number r(K)
is the winding number of φ around 0.

Equivalently, let Y be a non-zero vector field on Σ which lies in ξ|Σ and let Z be a non-zero vector
field tangent to K and defined on K. The rotation number is the twisting of Z relative to Y in ξ.
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In other words, the rotation number is the obstruction to extending Z to a non-zero vector field over
all of Σ.

Definition 10. Let K be a transverse knot, Σ a Seifert surface for K, and Z a non-zero section of
ξ|Σ. Let K ′ be the pushoff of K in the direction of Z. The self-linking number, sl(K) is the linking
number of K with K ′.

Equivalently, let V be a non-zero vector field in ξ ∩ TΣ along K. The self-linking number is the
obstruction to extending V over Σ to a non-zero vector field.

A useful bound on the classical invariants is the Bennequin inequality:

Theorem 2 (Bennequin Inequality). Let K be a Legendrian knot and let Σ be a Seifert surface for
K. Then

tb(K) + |r(K)| ≤ −χ(Σ)

(where χ indicates Euler characteristic). If K ′ is a transverse knot and Σ′ is a Seifert surface for
K ′ then

sl(K ′) ≤ −χ(Σ′)

A proof can be found in any introduction to contact topology including [11] and [8].

2.6. Standard Neighborhood Theorems. Contact structures can only make distinctions be-
tween manifolds on a global scale. Darboux’s theorem shows that locally contact structures on
3-manifolds are all the same. More careful argumentation shows that every Legendrian knot has a
neighborhood which is contactomorphic to a standard neighborhood of a Legendrian knot. These
classical results use rather different techniques than we will use for most of the other proofs in this
paper. A sketch of the proof is included here. For a more detailed proof of a more general result see
[11].

Theorem 3 (Darboux’s Theorem). Let (M, ξ) be a contact 3-manifold, and let p ∈M . Then there
is a neigbhorhood of p contactomorphic to a neighborhood of 0 in (R3, ξstd).

To extend this to neighborhoods of Legendrian knots, instead of just neighborhoods of points,
we need a standard Legendrian neighborhood to compare to. Let X = R2 × S1 be parametrized
by (x, y, z), z ∈ [0, 1). Take the contact structure ξ0 = ker(cos(2πz)dx + sin(2πz)dy. Then K0 =
{(0, 0, z)} is a Legendrian knot in (X, ξ0). Let N0 = {(x, y, z) ∈ X : x2 + y2 < 1}. Using this
notation we have the following:

Theorem 4 (Legendrian Standard Neighborhood Theorem). If K is a Legendrian knot in a contact
manifold (M, ξ), then there is a neighborhood N(K) and a contactomorphism φ : N(K)→ N0 which
sends K to K0.

Note that in N0 the contact planes twist once around K0 with respect to the Seifert surface
framing given by the x > 0 part of the xz plane. However, the contactomorphism may twist the
planes around the Legendrian knot arbitrarily many times with respect to the Seifert surface framing.
The number of times is determined by the Thurston-Bennequin number of the Legendrian knot.
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sketch of proof. Keep track of the line bundle which is orthogonal to the contact planes and the line
bundle in the contact planes which is orthogonal to the Legendrian knot. The direct sum of these
makes up the normal bundle to the Legendrian knot. Find a map of the normal bundle of the given
knot to the normal bundle of the standard Legendrian knot which preserves this split into the two
summands. If NK0 and NK denote the normal space to the standard Legendrian knot and the
given Legendrian knot respectively, we have an isomorphism Φ : NK → NK0, which preserves some
of the information of the contact structure.

One can embed a neighborhood of the 0-section of the normal bundle of a knot into the 3-manifold
so that the 0-section goes to the knot and the normal spaces are orthogonal to the knot. Let U0

and U be these neighborhoods in NK0 and NK respectively. Call these embeddings f0 : U0 → N0

and f : U → N(K) (N0 and N(K) are neighborhoods of K0 and K respectively). Using these
embeddings for the normal spaces of the given Legendrian knot and the standard Legendrian knot,
together with the map between the normal bundles of these two knots, we obtain a diffeomorphism
of neighborhoods of the two knots: f0 ◦ Φ ◦ f−1.

Then we use Gray’s stability theorem (below) to show that the contact structure induced by this
diffeomorphism is isotopic to the standard Legendrian contact structure through an isotopy that fixes
K0. Adjusting the diffeomorphism according to this isotopy provides the desired contactomorphism.

�

A standard trick that is used in contact topology to switch between smooth families of contact
structures and isotopies of the contact manifold is Gray’s stability theorem:

Theorem 5 (Gray stability). Let ξt (t ∈ [0, 1]) be a smooth family of contact structures on a closed
manifold M . Then there is an isotopy ψt of M such that Tψt(ξ0) = ξt for each t ∈ [0, 1].

2.7. Surfaces in a contact manifold. In this section we give a brief survey of some of the most
important definitions and theorems about surfaces in a contact manifold. For more details and
proofs see [12], [14], and [17].

Suppose S is a surface in (M, ξ), a contact 3-manifold. Because ξ is maximally non-integrable
the set of singularities E = {p ∈ S : TpS = ξp} contains no open set of S. For all p ∈ S \E, TpS ∩ ξp
is a line. There is a foliation of S \ E whose leaves are the integral submanifolds of TS ∩ ξ|S\E .
The characteristic foliation Sξ is a singular foliation on S made up of these leaves together with the
singularities on E.

The characteristic foliation also determines the contact structure in a neighborhood of the surface:

Theorem 6 ([7]). Let (Mi, ξi) be a contact manifold and Si an embedded surface for i = 0, 1. If
there is a diffeomorphism f : S0 → S1 that preserves the characteristic foliation, then f can be
extended to a contactomorphism on a neighborhood of S0.

The characteristic foliations encode a large amount of information about the contact structure.
Often we do not need to know all of this information to make effective geometric arguments. Giroux
introduced the theory of convex surfaces to capture the most essential information about the char-
acteristic foliation.

Definition 11. A vector field X on a contact manifold (M, ξ) is a contact vector field if its flow
preserves ξ.
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A surface S is convex if there is a contact vector field everywhere transverse to S. Equivalently,
S is convex exactly when there is a neighborhood N = S × I in M such that ξ is invariant in the I
direction.

Giroux proved that any closed surface can be C∞ approximated by a convex surface [12]. Honda
extended this result to surfaces S with Legendrian boundary providing the twisting of the contact
planes around the boundary relative the framing induced by the surface FS satisfies t(∂S, FS) ≤ 0.

The reason convex surfaces are useful, in addition to being prevalent is that we need not look
at the entire characteristic foliation. On convex surfaces we can focus instead on only a few curves
called the dividing set.

Definition 12. Given a convex surface S with a transverse contact vector field X, the dividing set
ΓS is the set of points p such that X(p) ∈ ξ(p). The isotopy type of ΓS is independent of choice of
X so the dividing set is well defined up to isotopy.

If Y denotes the positively-oriented normal vector-field to ξ|S and X is the contact vector field
transverse to S, then f : S → R defined by f(p) = 〈Yp, Xp〉 is a smooth function on S, where
ΓS = f−1(0). Therefore generically, ΓS is a one-dimensional submanifold of S, namely a collection
of closed curves and arcs with endpoints on ∂S. Furthermore ΓS is the boundary dividing R+, the
set where the orientation of X coincides with the orientation of the positive normal to ξ, from R−
the set where the orientations disagree. Also note that ΓS is always transverse to the characteristic
foliation because otherwise we would violate the non-integrability of the contact structure.

The prevalence of convex surfaces, and the usefulness of dividing curves in measuring twisting is
shown in the following theorem.

Theorem 7 (Kanda [17]). If γ is a Legendrian curve in a surface S then S may be isotoped relative
γ so that it is convex if and only if the twisting of the contact planes relative the framing given by S
has the property tS(γ) ≤ 0. Then if S is convex

tS(γ) = −1
2

#(γ ∩ ΓS)

While there cannot be any open neighborhood in S where TS matches up with ξ, there can be
one-dimensional submanifolds of singularities.

Definition 13. Suppose S is a convex surface. A Legendrian divide of S is a curve γ ⊂ S such
that TS|γ = ξγ .

Notice that a Legendrian divide can never intersect the dividing curves (otherwise the contact
vector field would be both transverse and tangent to S). Thus Legendrian divides are “parallel” to
dividing curves. Heuristically, the Legendrian divides alternate with the dividing curves in the direc-
tion of twisting. As the contact planes twist, the alternate between being tangent to S (Legendrian
divides) and being transverse to S (dividing curves).

The Giroux flexibility theorem shows why it is only the dividing curves, instead of the exact
characteristic foliation that we need to consider in contact topology. We will say that ΓS divides a
foliation F of S if there is an I-invariant contact structure on S × I such that F = ξ|S×{0}.

Theorem 8 (Giroux Flexibility [12]). Suppose S is a convex surface in (M, ξ) with contact vector
field X transverse to S. Suppose F is a singular foliation on S divided by ΓS. Then there is an
isotopy φt, t ∈ [0, 1], of S such that
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(1) φ0(S) = S

(2) φt(S) is transverse to X for all t ∈ [0, 1]
(3) The characteristic foliation of φ1(S) is F

Therefore convex surfaces are determined up to isotopy by their dividing sets. A useful theorem
that follows from Giroux’s flexibility theorem is the Legendrian realization principle (LRP). This the-
orem, originally proven by Kanda and reformulated by Honda, allows us to isotope a convex surface
so that almost any curve, and certain collections of curves on that surface, become Legendrian.

Theorem 9 (Legendrian Realization Principle). Suppose S is a convex surface with contact vector
field X transverse to S and C is a collection of curves on S satisfying the following properties:

• C is transverse to ΓS
• Every endpoint of C lies on ΓS
• Every component of S \ (ΓS ∪ C) has a piece of ΓS on its boundary

Then there exists an isotopy φt, t ∈ [0, 1] such that

(1) φt(S) is convex for all t ∈ [0, 1]
(2) φ0 = id

(3) φ1(ΓS) = Γφ1(S)

(4) φ1(C) is Legendrian

In particular if C is a closed curve on S with non-empty transverse intersection with ΓS , then C
can be realized as a Legendrian curve as in the above theorem.

In tight contact manifolds there are certain restrictions on the topology of the dividing set on a
convex surface. This is formalized by Giroux’s criterion for determining which convex surfaces have
tight neighborhoods:

Theorem 10 (Giroux’s criterion [14]). If S 6= S2 is a convex surface (closed or compact with
Legendrian boundary) in a contact manifold (M, ξ) then S has a tight neighborhood if and only if ΓS
has no homotopically trivial curves. If S = S2 then it has a tight neighborhood if and only if there
is only one dividing curve.

This significantly reduces the possibilities for the dividing set on a surface that lies in a tight
contact structure. We can get other restrictions on the dividing sets of convex surfaces by looking
at the relations between the dividing curves of two intersecting convex surfaces.

Lemma 1. Suppose S1 and S2 are convex surfaces that intersect transversely at a Legendrian curve
γ = S1 ∩ S2. Then the points where ΓS1 intersect γ alternate with the points where ΓS2 intersect γ
as in figure 8.

By the Legendrian realization principle, we can almost always isotope the surfaces so that their
intersection is Legendrian. Specifically, if the curve γ = S1 ∩ S2 intersect the dividing curves of S1

or S2 nontrivially, it can be realized as a Legendrian curve.

Proof. Since γ = S1 ∩ S2 is Legendrian, it has a neighborhood isotopic to D2 × S1 parametrized by
(x, y, t) with contact structure given by ker(cos(2πnt)dx + sin(2πnt)dy) where n is determined by
the number of times the dividing curves of S1 or S2 intersect γ. Essentially, n is the twisting of γ



16

Figure 8. The dividing curves alternate at the intersection of two convex surfaces

Figure 9. Rounding the edge of the intersection of two convex surfaces with Leg-
endrian boundary

with respect to the framing given by S1 or S2. Since S1 and S2 are always transverse, they cannot
twist around each other and thus the framings induced by either yields the same value for n. The
contact planes make on half-twist around γ with respect to S1 from one point of γ∩ΓS1 to the next,
with a singularity in between. Since S2 is transverse to S1 the singularities of the contact planes
along γ alternate between S1 and S2 as they twist, and the dividing curves meet γ in between where
the transverse contact vector field intersects the contact planes nontrivially.

More formally, we can show that this alternation occurs in the standard neighborhood of a
Legendrian knot with twisting n, (D2×S1, ker(cos(2πnt)dx+ sin(2πnt)dy)). We may assume by an
isotopy of the contact manifold and choice of coordinates that the surfaces are given by S1 = {x = 0}
and S2 = {y = 0} in a small neighborhood of γ, and the transverse contact vector fields are given
by ∂

∂y and ∂
∂x respectively. In this case the dividing curves of S1 are given by S1 ∩ {t = k

2n : k ∈
{0, 1, · · · , n− 1}} and the dividing curves of S2 are given by S2 ∩ {t = 2k+1

4n : k ∈ {0, 1, · · · , n− 1}}.
These alternate as shown in figure 8. After a contact isotopy, this extends to the general case. �

Lemma 2. If S1 and S2 are convex surfaces with Legendrian boundary, which intersect along their
boundaries, then we can smooth out the corner where the two surfaces meet. The dividing curves
which alternate along S1 ∩ S2 will always connect up as in figure 9.

This can be proven rigorously as in the previous lemma by looking explicitly at the standard
neighborhood D2 × S1 and replacing the corner with a quarter of a small cylinder.



17

Figure 10. The characteristic foliation on the annulus A and the positive and
negative transverse pushoffs of L

2.8. Transverse Pushoffs. Because Legendrian knots are more rigid than transverse knots, it is
typically easier to compute invariants of Legendrian knots than of transverse knots. We can relate the
Legendrian invariants of a knot to the transverse invariants of a controlled transverse approximation:
the transverse pushoff.

Definition 14. Given a Legendrian knot L, let A = S1 × [−ε, ε] be the embedded annulus where
S1×{0} = L, and TA|L = ξ|L, We can make ε sufficiently small so that the characteristic foliation
on A is as in figure 10. Then the positive (resp. negative) transverse pushoff is T+(L) = S1 × { ε2}
(resp. T−(L) = S1 × {− ε2}).

The negative transverse pushoff will be oriented negatively with respect to the contact structure.
Since we have defined transverse knots to be positively oriented with respect to the contact struc-
ture we will mainly look at the positive transverse pushoff, though negative transverse knots have
corresponding results.

The following lemma gives the relation between the classical Legendrian and transverse invariants.

Lemma 3. Let L be a Legendrian knot,

sl(T+(L)) = tb(L)− r(L)

Proof. The idea of the proof is to compute each invariant in terms of the twisting of various vector
fields around each other, and then relate the vector fields for a Legendrian knot and its transverse
pushoff.

Let K be a Legendrian knot, and A = S1× [−ε, ε] be the annulus from the definition of transverse
pushoff. Let Σ be a Seifert surface for K. Let σ be a non-zero vector field on Σ which lies in ξ|Σ,
then restricted to K. Let τ be a vector field in ξ|K always transverse to TK. Let ν be the vector
field of outward unit normals to Σ, then restricted to K.

The rotation number is the twisting of positive vectors in TK with respect to σ. This is equivalent
to the twisting of τ , which is always transverse to TK, to σ. Therefore r(K) = t(τ, σ).

The Thurston Bennequin number measures the twisting of the contact planes with respect to the
Seifert surface. Since ν is orthogonal to the Seifert surface and τ is in ξ|K and is always transverse
to TK (and thus always stays on one side of TK), tb(K) = t(τ, ν).

Now we can find corresponding vector fields for the transverse knot T+(K). Let Σ′ be the Seifert
surface for T+(K) obtained by adding on the small part of A from K to T+(K) to Σ. Let σ+, τ+,
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and ν+ be the vector fields obtained by pushing σ, τ , and ν along A in the [−ε, ε] direction. Then σ+

is the non-zero vector field in ξ|Σ′ which extends σ. ν+ is the outward normal to Σ′ and is isotopic
to ν since K and T+(K) are topologically isotopic. σ+, τ+, and ν+ rotate around each other in the
same relations as σ, τ , and ν.

The self-linking number of T+(K) is the linking number of T+(K) with a pushoff in the direction
of a non-zero section of ξ|Σ′ . σ+ is one such section. Therefore to measure the self-linking number
we can simply measure the twisting of σ+ with respect to the tangent space to Σ′ or equivalently
with respect to ν+ = ν. The equation comes from the following:

sl(T+(K)) = t(σ+, ν+)

= t(σ+, τ+) + t(τ+, ν+)

= t(σ, τ) + t(τ, ν)

= −r(K) + tb(K)

�
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3. Stabilization, Bypasses, and Thickening

3.1. Stabilization of Legendrian Knots in (S3, ξstd). The simplest way to change the Legendrian
isotopy type of a knot is to add a twist in the knot so that as it moves through the contact structure,
the planes have additional twisting. We formalize this notion in stabilization. Given a Legendrian
knot L, there are two kinds of stabilization operations which change the classical invariants, tb(L)
and r(L). Positive stabilization of L, denoted S+(L), is given by the following transformation shown
in the front projection and top projection:

S+

S+

Figure 11. The front projection (above) and top projection (below) of a positive stabilization

and negative stabilization of L, denoted by S−(L) is given by:

S-

S-

Figure 12. The front projection (above) and top projection (below) of a negative stabilization

Stabilization is a well-defined operation because, in a front projection of a knot, we can move
the stabilization across a cusp or a crossing to a different part of the diagram through Legendrian
Reidemeister moves. For the same reason, positive and negative stabilizations commute: S+ ◦S− =
S− ◦ S+.

If we compare the Seifert surface of the stabilized knot to that of the unstabilized knot, we see
that the stabilization adds in a twisted disk, which we will call the stabilization disk. See figure 13.

Examining the twisting of the contact planes along the stabilizing disks (Figure 14) we can see that
the framing given by the stabilization disk makes an additional full twist as it passes through the two
cusps of the stabilized knot with respect to the Seifert surface obtained by gluing the stabilization
disk to a Seifert surface for the unstabilized knot. Thus the twisting of the planes with respect to
a Seifert surface for the stabilized knot has one more negative twist than for the unstabilized knot.
This happens for both positive and negative stabilizations.

tb(S+(L)) = tb(S−(L)) = tb(L)− 1
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Figure 13. The stabilization disks in the front projection (above) and top projec-
tion (below) under positive (left) and negative (right) stabilization.

Figure 14. The twisting of the contact planes around the stabilized portion of a
knot with respect to the framing given by the Seifert surface obtained by gluing the
stabilizing disk to a Seifert surface for the unstabilized knot.

More generally we have the formula tb(L) = writhe(π(L))− 1
2{number of cusps in π(L)} where π(L)

is the front projection of the knot. This formula comes from examining the twisting of the contact
planes locally near crossings and cusps as in this specific case for stabilizations.

We can also compute the rotation number of the stabilizations. It is easiest to see this from
the top projections since the contact planes are all oriented the same way from this perspective, so
the rotation number is simply the number of times the knot winds around counterclockwise in the
top projection minus the number of times the knot winds around clockwise in the top projection.
Therefore

r(S+(L)) = r(L) + 1

r(S−(L)) = r(L)− 1

Using stabilizations, we can easily make the Thurston-Bennequin number of a knot arbitrarily
small. However, for a given knot type K, there is a maximal Thurston-Bennequin number achieved
by that knot, denoted tb(K), which is an invariant of the knot type. To determine whether we can
increase the Thurston-Bennequin number of a knot, we see if we can destabilize the knot (the inverse
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operation of stabilization). While we can always perform positive or negative stabilizations on any
Legendrian knot, we cannot always destabilize. To study this in greater detail, we look at a notion
from the study of convex surfaces within contact structures: bypass disks.

3.2. Types of singularities of a characteristic foliation. A singularity occurs in a characteristic
foliation of a surface S when the contact plane coincides with the tangent plane to the surface.

For each singularity, we can classify it as elliptic or hyperbolic. In order to do this, we will see
that we must perturb the surface slightly so that certain transversality conditions are met at the
singularity. Suppose s ∈ S is the singularity. We first find a small neighborhood U of s in S such
that we can trivialize the vector bundle TM |U under a map φ : TM |U → U × R3 such that at each
x ∈ S, TxS ⊂ TxM maps to {x} × R2 × {0}. We can shrink and perturb U so that

(1) s is the only singularity in U
(2) φ(ξx) is not perpendicular to φ(TxS) = {x} × R2 × {0} for any x ∈ U .

Then we can define a map f : U → R2 in the following way. For each x ∈ U , let nx be the
line orthogonal to φ(ξx) ⊂ {x} × R3. Because φ(ξx) is not perpendicular to {x} × R2 × {0} at
any x ∈ U , nx intersects {x} × R2 × {1} exactly once, at a point (x, (ux, vx, 1)) ∈ {x} × R3. Let
f(x) = (ux, vx) ∈ R2. Note that f maps a point in U to (0, 0) if and only if that point is a
singularity, because nx ∩ {x} × R2 × {1} = (x, (0, 0, 1) if and only if nx = {(x, (0, 0, t)) : t ∈ R},
namely when nx = φ(ξx)⊥ is perpendicular to {x} ×R2 × {0}. We may assume that f is transverse
to the map 0 : U → R2 where 0(x) = (0, 0) for all x ∈ U , by perturbing ξ slightly, which by the
Gray stability theorem 5 can equivalently be done by perturbing U slightly. We then compute the
oriented intersection number of f with 0 near s. Because f is transverse to 0 and s is the only point
in U which f maps to (0, 0), this is ±1.

If the intersection number is +1 we say the singularity is elliptic and if it is −1 we say the
singularity is hyperbolic. The foliations in a neighborhood of elliptic and hyperbolic singularities are
illustrated in figure 15.

elliptic elliptic hyperbolic

Figure 15. Two elliptic singularities (left and center) and a hyperbolic singularity (right)

We will frequently consider convex surfaces with Legendrian boundary. When we have singulari-
ties at the boundary, we can still classify them as elliptic or hyperbolic by computing the intersection
number near the singularity. In these cases the foliations look locally like figure 16.

In addition to being classified into elliptic and hyperbolic points, singularities are also classified
as positive or negative. A singularity is positive (resp negative) if the orientation of the tangent
plane to the surface agrees (resp. disagrees) with the orientation of the contact plane. Note that
this sign is separate from the sign of the intersection number used above to classify points as elliptic
or hyperbolic. Elliptic and hyperbolic singularities can both be either positive or negative in sign.
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elliptic elliptic hyperbolic

Figure 16. Elliptic (left) and hyperbolic (right) singularities along the boundary
of a surface

In order to make sense of these definitions we need to fix an orientation for the contact planes.
In the standard contact structure on R3 we will take { ∂∂x , x

∂
∂z −

∂
∂y} to be an ordered basis for the

contact planes, that gives the positive orientation.
As an example we will look at a Seifert surface for the standard Legendrian unknot in (R3, ξstd).

(Figure 17)

Figure 17. The foliation for the standard unknot in (R3, ξstd). The two singular-
ities are negative elliptic points.

At the cusps the tangent planes to the Seifert surface are horizontal as are the contact planes.
This is because we can obtain a basis for each of these planes from

(a) the tangent vector to the cusp in the plane of the page ( ∂∂y )
(b) a vector orthogonal to the page ( ∂

∂x )
(a) is clearly included in the tangent plane to the Seifert surface at the cusp. It is included in

the contact plane because the unknot is Legendrian. (b) is tangent to the actual Legendrian unknot
because the only way a smooth knot can have a cusp in the projection is if the tangent vector to the
knot is perpendicular to the projection plane. Therefore (b) is in the tangent plane to the Seifert
surface at the cusp. (b) is in the contact plane at the cusp because it is in every contact plane in
(R3, ξstd). Note that it does not matter which Seifert surface we choose for this Legendrian unknot,
we will always have singularities at these two cusps.

We can choose the Seifert surface such that it does not contain the vector ∂
∂x at any other place,

and so these cusps are the only singularities. Intersecting the contact planes with the tangent planes
to the surface on its interior, we obtain the foliation which reveals that the singularities are elliptic.
Finally we determine the sign of the singularities. At the cusps, the tangent plane is spanned by
{ ∂∂x ,

∂
∂y} which we can take as a positively oriented basis at one cusp and a negatively oriented basis

at the other since the upward facing side of the surface is different between the two cusps. Therefore
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γ1

γ2

- + -

-
--

-

Figure 18. A bypass disk. The singularities are marked by points.

one singularity is positive elliptic and the other is negative elliptic (depending on the orientation we
choose for the surface).

3.3. Bypasses. Suppose we have a Legendrian knot L. A bypass for L is a convex disk, D with
Legendrian boundary ∂D = γ1 ∪ γ2 where D ∩ L = γ1 and γ1 and γ2 only intersect at their two
endpoints where the characteristic foliation on D has the following properties:

• There are two singularities of the same sign at the endpoints of γ1 and γ2 where they meet,
and exactly one singularity of the opposite sign on the interior of γ1.

• The signs of the singularities along γ2 (including those on the endpoints) are all the same,
and there are at least 3 singularities along γ2 (including the endpoints).

• There are no singularities on the interior of D.

See figure 18 for an example.
The sign of the bypass is the sign of the singularity on the interior of γ1 (the only singularity with

a different sign from all the others).
The reason we are interested in bypasses here is because they show us how to destabilize a

Legendrian knot.

Proposition 1. Bypass disks with D, γ1, γ2 as above, are stabilization disks, where γ1 is the stabilized
portion of the boundary of D (black line in figure 13) and γ2 is the unstabilized portion of the boundary
of D (red line in figure 13).

Proof. The full foliation of a stabilization disk is given in figure 19. To get this full picture we will
examine smaller portions of the stabilization disk.

Looking at the end points where the red (unstabilized) and black (stabilized) curves meet, we
see that each curve approaches the same slope in the front projection, thus forming a cusp which
corresponds to a singularity. As we approach each endpoint, the tangent plane to the stabilizing
disk which connects the red curve to the black curve approaches a plane spanned by a vector of that
constant slope and a vector going out of the page. This span is identical to the contact plane at
that point. Therefore each endpoint is a singularity. Furthermore these are elliptic points because
the contact planes in a neighborhood of these points intersect the tangent planes pointing toward
the endpoints.
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Figure 19. The foliation of a positive stabilizing disk.

At the cusp at the bottom of the black curve there is another singularity (the cusp indicates that
the tangent plane to the surface is going into the page at that point, as the contact planes do).
Again examining the foliation nearby we see that this is an elliptic singularity.

We will orient the surface such that the induced normal vector points up near the red (unsta-
bilized) part of the boundary. We note that when the contact planes are horizontal, their positive
orientation is given by { ∂∂x ,−

∂
∂y} so the induced normal is − ∂

∂z . Therefore the elliptic singularities
where the red curve meets the black curve are both negative. However at the cusp at the bottom of
the black curve, the surface twists so that the induced normal now points down. Therefore at the
cusp in the center of the black curve there is a positive elliptic singularity.

We can choose the surface so that the tangent planes are transverse to the contact planes along
the red curve at all but the endpoints and the center point at which there is a hyperbolic singularity.
Since neither the surface nor the contact planes twist along the red curve, this singularity is negative
like the endpoint singularities. �

It is also useful to study bypasses of convex surfaces. A bypass for a convex surface S is a bypass
for a Legendrian curve γ contained in S that does not intersect S anywhere except where it intersects
γ. Furthermore it must have the property that it intersects, ΓS , the dividing curves of S, at exactly
the three elliptic singularities in the foliation of D along γ. See figure 20.

We can obtain a new convex surface from a bypass disk, D by looking a neighborhood of S ∪D,
and taking the boundary component of that neighborhood that lies on the same side of S that D
does. Since convex surfaces are essentially characterized by their dividing curves, understanding the
surface that results from passing over a bypass disk comes down to understanding the change in the
dividing curves. This change is described in the following lemma by Honda [14]

Lemma 4 (Bypass Attachment (Honda) [14]). Assume D is a bypass for a convex surface S. Then
there exists a neighborhood of S ∪ D, diffeomorphic to S × [0, 1] such that Si = S × {i}, i = 0, 1
are convex, S × [0, ε] is I-invariant, S = S × {ε}, and ΓS1 is obtained from ΓS0 by performing the
operation depicted in Figure 20 in a neighborhood of the attaching Legendrian arc where the bypass
disk meets S.
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Figure 20. S0 with bypass disk (left), S1 (right). The dotted lines are the dividing curves.

Figure 21. A bypass on a torus along three distinct dividing curves

When we are trying to classify knots in a contact structure, we will frequently need to understand
what happens when we attach a bypass disk to a torus. The dividing curves on a torus are fairly
straightforward. Since there cannot be any dividing curves that bound a disk in a tight contact
structure, all dividing curves must be parallel . Since the dividing curves must split the surface into
two disconnected pieces, there is an even number of components. First, we will assume the slope of
the dividing curves is 0 and the bypass disk intersects the surface along a Legendrian ruling curve
of slope −∞ < r ≤ −1 (other cases come from an SL(2,Z) transformation of this case). If there
are 3 distinct dividing curves on the torus that the bypass disk intersects applying the above lemma
shows us that the bypass eliminates two of the dividing curves (Figure 21).

If the torus only has two dividing curves, then the bypass changes the slope. If the slope of the
dividing curves was originally 0, after the bypass is changes to −1. (Figure 22).

There is a convenient way to determine the change in slope after a bypass when there are only two
dividing curves on the torus, using the Farey tessellation of the disk model of the hyperbolic plane,
depicted in Figure 23, and constructed in the following way [14]. First label (1, 0) as 0/1 = 0 and
(−1, 0) as 1/0 =∞. Then successively, between every two points labeled p/q, p′/q′ such that (p, q),
(p′, q′) forms a Z basis for Z2 place a point at the midpoint between them labelled (p+ p′)/(q+ q′).
We will say [a, b] in the Farey tessellation denotes the arc starting at a and moving counterclockwise
until b.



26

Figure 22. A bypass on a torus with only two dividing curves

0/1±1/0

-1/1

1/1

1/22/1

-1/2-2/1

1/3

2/33/2

3/1

-3/1

-3/2 -2/3

-1/3

Figure 23. The Farey tessellation of the disk model of the hyperbolic plane

We then obtain the slope of the torus with two dividing curves after a bypass using the following
lemma:

Lemma 5 (Honda [14]). Suppose T is a convex torus with two dividing curves of slope s. Suppose
there is a bypass disk D which intersects T along a Legendrian ruling curve of slope r 6= s. Then
after the bypass, the dividing curves have slope s′, which is the point on [r, s] closest to r that has
an edge to s.

Now we want to know how to find bypass disks. One simple way is by finding boundary-parallel
curves. A boundary-parallel curve is a dividing curve on a surface S which intersects ∂S twice and
cuts off a disk which contains no other dividing curves.

The characteristic foliation intersects the dividing curve transversely. By flowing along the char-
acteristic foliation, we will eventually reach a disk with Legendrian boundary which is in fact a
bypass disk. Because the dividing curve is boundary parallel, it contains one singularity, so the lim-
iting disk will end at the singularities to the left and right. Therefore this part along the boundary
will be the γ1 side of the bypass disk. Flowing out into the surface along the characteristic foliation
will limit towards a Legendrian curve with singularities of the same sign. The fact that this limiting
will end at a Legendrian curve is due to a lemma of Eliashberg. He shows that this happens when
there are no “limit cycles” - a closed leaf in the characteristic foliation. The fact that tightness is
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equivalent to the nonexistence of limit cycles is an important theorem in the classification of contact
manifolds. Since we are only working in tight contact manifolds, Eliashberg’s lemma applies:

Lemma 6 (Eliashberg [6]). If V is a neighborhood in a surface, and no trajectory exiting (resp.
entering) the characteristic foliation is attracted by limit cycles then the closure of the set of points
which can be reached from V by flowing along the characteristic foliation has a natural structure of
a Legendrian polygon. All vertices on the boundary are negative (resp. positive).

One common use of boundary-parallel curves in finding bypasses is on an annulus. In the case of
an annulus, there are dividing curves which begin and end on different boundary components and
those which begin and end on the same boundary component. If there are dividing curves which
begin and end on the same boundary component, at least one of them must be boundary parallel.
When the number of dividing curves intersecting each boundary component differs, there must be
such dividing curves which begin and end on the same boundary component. Half the number
of intersections of the dividing curve with each Legendrian boundary component gives its twisting
number. This is summed up in the following imbalance principle:

Lemma 7 (Imbalance Principle [9]). If A is a convex annulus and ∂A = L1 tL2 is Legendrian and
t(L1) < t(L2) then there is a bypass for L2 on A.

3.4. Thickening. We will use bypasses to thicken solid tori which are neighborhoods of a knot. A
solid torus S1×D2 represents a knot K if its core curve is isotopic to K. Taking a thicker or thinner
solid torus changes the slope of the dividing curves on the boundary of the solid torus. Given a
Legendrian knot K with tb(K) = n, a standard neighborhood of K is a solid torus that represents
K with two dividing curves on the boundary of slope 1/n. This standard neighborhood corresponds
to the standard neighborhood of theorem 4.

The following lemmas follow from Honda’s classification of tight contact structures on T 2× I and
the solid torus [14]. They describe different slopes of dividing curves that we can expect to find on
the boundary of solid tori representing a knot.

Lemma 8 (Etnyre, Honda [9]). If T 2×[0, 1] has convex boundary in standard form and the boundary
slope on T 2×{i} is si for i = 0, 1, then we can find convex tori parallel to T 2×{i} with any boundary
slope s in [s1, s0] (if s0 < s1 then this means [s1,∞] ∪ [−∞, s0]).

In [14], Honda classified all tight contact structures on T 2 × I and solid tori. The main idea was
to break T 2 × I into basic slices. A basic slice is a layer, T 2 × I whose two boundary slopes (from
the two boundary components) form a basis for Z2. Honda proves that given a basic slice with
boundary slopes s0 and s1, one can find a torus of any slope in between. Any T 2 × I can be split
into a sequence of basic slices divided by tori whose slopes increase monotonically (in the sense of
the above lemma), so the lemma follows.

Lemma 9 (Etnyre, Honda [9]). If a solid torus has convex boundary where the slope of the dividing
curves is s < 0, then we can find a convex torus parallel to the boundary of the solid torus whose
dividing curves have slope s′ for any s′ ∈ [s, 0).

Proof. This follows from the fact that every Legendrian knot has a standard neighborhood. By
taking arbitrarily many stabilizations, we can find standard neighborhoods whose boundaries are
arbitrarily close to 0 (− 1

n as n → ∞). Between each successive integer is a basic slice so we can
obtain all slopes in between. �
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Figure 24. The front projection of a Legendrian unknot with tb = −1

To find thickenings of the torus we need to look for bypasses (equivalently destabilizations of
Legendrian curves).

3.5. Basic example: the unknot. As an application of the tools discussed above, we will go
through a proof of the fact that the unknot is Legendrian simple, namely a Legendrian unknot is
determined up to Legendrian isotopy by its Thurston-Bennequin number and its rotation number.

Recall that stabilization decreases tb by 1 and changes r by ±1. Therefore we first look at
Legendrian unknots with maximal tb and then look at the stabilization/destabilization relationships
between other Legendrian unknots.

We claim first that the maximal tb for the unknot, U , tb(U) = −1. First if there were a Legendrian
unknot U with tb(U) = 0 then U would bound an overtwisted disk. Since we are looking at knots
in the standard tight contact structure on S3, this cannot happen. Any Legendrian unknot with
tb > 0 would stabilize to a Legendrian unknot of tb = 0 therefore tb(U) < 0. The front projection of
a Legendrian unknot with tb = −1 is given by figure 24.

Next we claim that there is a unique Legendrian unknot with tb = −1. Suppose U is a Legendrian
unknot and tb(U) = −1. Let D be a disk whose boundary is U . We can isotope D slightly so that
it is convex since tb(U) < 0 (theorem 7). Furthermore

−1 = tb(U) = tD(U) = −1
2

#(U ∩ ΓD)

therefore the dividing curves on D intersect U exactly twice. Since the dividing curves cannot bound
a disk in a tight contact structure, all dividing curves on D must start and end on the boundary U .
Therefore there is a single dividing curve on U so the characteristic foliation on D is unique modulo
the Flexibility theorem. Then if there are two Legendrian unknots U,U ′ of tb = −1 bounding convex
disks D,D′ respectively, there is a map f : S3 → S3 which sends U to U ′ and D to D′ and is a
contactomorphism when restricted to N(D), a neighborhood of D (theorem 6). We can isotope f
to a contactomorphism on all of S3 because the characteristic foliation on the boundary of N(D)
is the same as that on its image N(D′) since f is a contactomorphism on N(D). Therefore the
boundary of S3 \N(D) has the same characteristic foliation as S3 \N(D′). Since there is a unique
tight contact structure on a 3-ball with a given characteristic foliation on its boundary, f must be
a contactomorphism on S3 \N(D) as well. Therefore U and U ′ are Legendrian isotopic.

Finally we show that all other Legendrian unknots destabilize, so every Legendrian unknot is
a stabilization of the maximal tb Legendrian unknot. Suppose U is a Legendrian unknot with
tb(U) < −1. Then U bounds a convex disk D where

tb(U) = tD(U) = −1
2

#(U ∩ ΓD)

Therefore the dividing curves of D intersect U more than twice so there is more than one dividing
curve on D. One of these dividing curves must be boundary parallel and therefore there is a bypass
which allows U to destabilize. Therefore all Legendrian unknots are stabilizations of the unknot
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depicted in figure 24 and are thus completely classified by their Thurston-Bennequin number and
rotation number.
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4. Cables, UTP, and Legendrian Simplicity

Throughout this section we will use the convention that curly letters will be used to denote a
topological knot type, and instances of that knot type will be denoted by the standard font. For
example, K and K ′ are knots of type K. We will follow this convention to distinguish a knot from
a knot type, and will frequently refer to a knot type as a knot.

4.1. The Uniform Thickening Property (UTP). We begin with some important definitions.
Recall that a solid torus is said to represent a knot type K if its core curve has topological knot type
K.

Definition 15. The contact width of a knot K is

w(K) = sup
1

slope(ΓS1×D2)

where the supremum is taken over all embeddings of S1 ×D2 into S3 which represent K.

Recall that a standard neighborhood of a Legendrian knot K is a solid torus N(K) containing K
such that Γ∂N(K) = 1

tb(K) .

Definition 16. A knot K satisfies the uniform thickening property (UTP) if

• tb(K) = w(K)
• Every embedded solid torus representing K can be thickened to a standard neighborhood of

a maximal tb Legendrian knot.

The significance of the UTP comes from the following theorem which we will prove in the last two
parts of this section.

Theorem 11 (Etnyre, Honda [10]). If K is a Legendrian simple knot and K satisfies the UTP,
then all of its cables are Legendrian simple.

Before we prove this theorem, we will establish some useful background and some notation.

4.2. Tight contact structures on T 2 × I. Tight contact structures on T 2 × I were classified by
Honda in [14]. He first looks at what he calls basic slices. (T 2 × I, ξ) is a basic slice if ξ is tight,
Ti = T 2 × {i} is convex with two dividing curves of slope si for i = 0, 1, where the minimal integral
representatives si form a Z basis of Z2. Furthermore we require that ξ be minimally twisting, which
essentially means that all the slopes of tori isotopic to T0 and T1 have dividing curves with slopes
between s0 and s1. Then we have the following:

Theorem 12 (Honda [14]). If T 2 × I has the boundary conditions of a basic slice, then there are
exactly two minimally twisting tight contact structures, both of which are universally tight. They are
distinguished by their relative half-Euler class. The Poincaré duals of the relative half-Euler classes
are given by ± the difference of the shortest integer vectors corresponding to s0 and s1, the slopes of
the dividing curves on the boundary components.

A general T 2 × I splits into layers of basic slices. The basic slices are determined by finding
the minimal sequence of jumps on the Farey tesselation from s0 to s1, because jumps on the Farey
tesselation correspond to pairs of vectors which form a Z basis for Z2. Thickening to the next layer
is equivalent to attaching a bypass (as with thickening solid tori). The sign of the bypass determines
which tight contact structure you have on the basic slice. Most of the time, basic slices will only
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glue to each other if the signs of the bypasses match up, or equivalently, if the signs of the Poincaré
duals of the half-Euler classes match up. However there are certain blocks of basic slices where the
sign can switch at the boundary, at these places we say there is a mixing of signs.

Lemma 10 (Honda [14]). There can be mixing of signs along a torus in (T 2 × I, ξ) only if the
dividing curves have slopes which are negative integers or the reciprocal of negative integers. If
T 2 × I is split into blocks of basic slices where the boundary of each block is a negative integer (or
the reciprocal of a negative integer), then the signs within each block are constant. However, there is
a different factorization of the same (T 2 × I, ξ) where the signs of two adjacent blocks are switched
(this is known as shuffling).

This essentially completes the classification of tight contact structures on T 2 × I. By analyzing
how to split thickened tori into basic slices, one can explicitly count the number of tight contact
structures on T 2× I. There are other cases to deal with when the number of dividing curves on the
boundary tori is greater than 2. This ends up giving a non-rotative slice where all convex tori have
the same dividing slope and the other boundary component has only 2 dividing curves. There is
also the possibility that there are full rotations so the slopes of the dividing curves change and then
rotate all the way around the Farey tesselation before reaching the other boundary component. In
[14], Honda is able to completely classify tight contact structures on T 2 × I, and count the number
of tight contact structures in the minimally twisting rotative cases, using analysis of the splitting
into basic slices and the shuffling lemma.

4.3. Cables and Coordinates. A (p, q) cable of a knot K is a knot K(p,q) that sits on the boundary
of N(K), a solid torus representing K, and wraps around ∂N(K) p times meridonally and q times
longitudinally.

We will identify this boundary torus with R2/Z2 under a coordinate system where the longitude
has slope ∞ and the meridian has slope 0. This coordinate system will be referred to as CK. Under
CK, K(p,q) has slope q

p .
It will also be useful to look at solid tori representing K(p,q), and coordinates on their boundaries.

Suppose K(p,q) is a (p, q) cable of K which sits on the boundary of N(K). Furthermore, suppose
N(K(p,q)) is a solid torus representing K(p,q). Let A be an annulus on ∂N(K) that intersects
∂N(K(p,q)) along its boundary, such that ∂N(K(p,q)) \A has two disjoint components, S1, S2, each
of which is an annulus such that A ∪ Si is isotopic to ∂N(K). If we think of ∂N(K) as R2/Z2 and
K(p,q) as a line of slope q

p , we can find A as in figure 25.

Then we define CK(p,q) to be the coordinate system on ∂N(K(p,q)) where the meridian has slope
0 and A ∩ ∂N(K(p,q)) has slope ∞.

On the other hand, we also have the coordinate system CK(p,q) on ∂N(K(p,q)) where the meridian
has slope 0 and the longitude has slope ∞. The longitude is defined by the intersection of a Seifert
surface for K(p,q) with ∂N(K(p,q)). In order to compare CK(p,q) with CK(p,q) we want to describe the
Seifert surface for K(p,q). Take |p| copies of meridional disks of N(K) and |q| copies of Seifert surfaces
for K whose boundaries lie on ∂N(K). If we identify N(K) with a square in coordinates CK then
we can imagine that the meridional disks lie below the plane of the square (corresponding to inside
N(K)), and the Seifert surfaces lie above the plane of the square (corresponding to outside N(K))
so that they only intersect along their boundaries on ∂N(K). At each of these pq intersections add a
twist to connect these pieces together into a single surface. By choosing the twists in one direction or
the other, we obtain a surface whose boundary is a curve of slope ± qp on N(K) and is thus isotopic
to K(p,q) as in figure 26
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A

A

A

A

A

Figure 25. The square represents the identification of R2/Z2 with ∂N(K). The
black lines represent K(p,q). The blue cylinders represent N(K(p,q)). The yellow
regions marked A lie in the plane of the page and make up the annulus A discussed
above. N(K(p,q)) ∩ A is precisely the intersection of ∂N(K(p,q)) with the plane of
the page, so half of each cylinder lies above the page and half lies below. Note that
if we take the union of A with either the piece of ∂N(p,q) which lies above the page
or with the piece of ∂N(p,q) that lies below the page, we get a torus isotopic to
∂N(K).

Figure 26. The square represents N(K) the blue horizontal triangles are the |p| =
3 meridional disks. The purple vertical triangles are the |q| = 2 Seifert surfaces for
K. After adding in twists at the intersections we obtain a surface whose boundary
is the black line, which has slope ± qp (with the sign depending on the direction of
the twists).

We want to be able to switch between these two coordinate systems. The transformations between
(R2/Z2, C(p,q)

L ) and (R2/Z2, CL(p,q)) are given by:

(3)

[
1 −pq
0 1

]
: (R2/Z2, CL(p,q))→ (R2/Z2, C(p,q)

L )
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(4)

[
1 pq

0 1

]
: (R2/Z2, C(p,q)

L )→ (R2/Z2, CL(p,q))

Figure 27 shows this pictorially. When we compare this with the twisting of the contact planes we
get the following lemma:

Lemma 11. If K(p,q) ∈ K(p,q) is the (p, q) cable of K ∈ K then

t(K(p,q), C
(p,q)
K ) + pq = t(K(p,q), CK(p,q)) = tb(K(p,q))

A

∞

∞

0 0

Figure 27. On the left we have N , the neighborhood of the (p, q) cable of a knot
L (∂N is the blue cylinders), lying on the square which represents the boundary
of a neighborhood of L. The yellow sections are the annulus A. The purple lines
are the boundary of the Seifert surface obtained by taking p meridional disks and
q Seifert surfaces for L and adding in twists at their intersections. Thus the purple
lines are the longitude of N . On the right, ∂N is identified with the square and we
have coordinates C(p,q)

L (blue) and CL(p,q) (purple).

In the case where K is an unknot and K(p,q) is a torus knot, we have some further coordinate
systems. An unknotted torus decomposes S3 into two solid tori V1 and V2, (∂V1 = −∂V2). We
will say that U(p,q) lies on ∂V1 = −∂V2. Let U1,U2 be the core (unknotted) curves of V1 and V2

respectively. Here I am using the notation that indicates that U1 and U2 are topological knot types.
However I want to only allow knots that are topologically isotopic to the core curve of V1 (or V2)
within V1 (or V2). Thus, even though U1 and U2 are both topological unknot types, they live in
disjoint solid tori. Then the (p, q) = (2, 3) torus knot K ∈ K is the (p, q) cable of U1 and the (q, p)
cable of U2, because the boundaries of V1 and V2 are endowed with opposite orientations.

In addition to the standard coordinate system on ∂V1 where the meridian of V1 has slope 0 and
the longitude has slope ∞, we will have one other coordinate system on these unknotted tori which
will be denoted by C(p,q). Under this coordinate system the (p, q) torus knot has slope ∞. To
determine what corresponds to slope 0 in these coordinates, choose a transformation M ∈ SL(2,Z)
which sends vectors in the coordinates C(p,q) to vectors in the coordinates CU1 . Since (0, 1)t in C(p,q)

must be sent to (p, q)t in CU1 we have

M =

[
x p

y q

]
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where x, y are chosen such that xq − yp = 1. Then the vector (1, 0)t (slope 0) in coordinates C(p,q)

is given by (x, y)t (slope y
x ) in coordinates CU1 .

Note this is different notation from C(p,q)
Ui

which is a coordinate system for neighborhoods of the
(p, q) cable of Ui, while C(p,q) is a coordinate system for neighborhoods of Ui.

The transformations between (R2/Z2, C(p,q)) and (R2/Z2, CU1) are given by:

(5)

[
x p

y q

]
: (R2/Z2, C(p,q))→ (R2/Z2, CU1)

(6)

[
q −p
−y x

]
: (R2/Z2, CU1)→ (R2/Z2, C(p,q))

Note that the transformation between (R2/Z2, CU1) and (R2/Z2, CU2) is[
0 1

1 0

]
: (R2/Z2, CU2)→ (R2/Z2, CU1)

This matrix has determinant −1 and is thus not in SL(2,Z) because the orientation on a neigh-
borhood of U2 is the opposite of the orientation on a neighborhood of U2. (Recall U1 and U2 are
the core curves of V1 and V2 where V1 ∪ V2 = S3 and V1 ∩ V2 = ∂V1 = −∂V2.) Then to change
coordinates from CU2 to C(p,q) we have the transformation

(7)

[
−p q

x −y

]
=

[
q −p
−y x

][
0 1

1 0

]
: (R2/Z2, CU2)→ (R2/Z2, CU1)→ (R2/Z2, C(p,q))

We summarize these coordinate systems in the following table:

∂N N neighborhood of: slope ∞ is given by slope 0 given by
CUi Ui for i ∈ {1, 2} Longitude of N (bounds a disk outside N) Meridian of N

C(p,q) U1 The slope of the (p, q) torus knot on ∂N slope y
x in CU1

CU(p,q) U1(p,q) Longitude (bounds a Seifert surface for K) Meridian of N

C(p,q)
U U1(p,q) N ∩A, s.t. ∃ S nbhd of U , ∂N+ ∪A ∼= ∂S ∼= ∂N− ∪A, Meridian of N

∂N+ t ∂N− t (∂N ∩A) = ∂N
CK(p,q) (p, q) cable of K Longitude (bounds Seifert surface for K(p,q)) Meridian of N

C(p,q)
K (p, q) cable of K N ∩A, s.t. ∃ S nbhd of K, ∂N+ ∪A ∼= ∂S ∼= ∂N− ∪A, Meridian of N

∂N+ t ∂N− t (∂N ∩A) = ∂N

4.4. Knots with the UTP. Although it seems that the UTP is an interesting property since it is
a sufficient condition on a knot to ensure that all cables of a Legendrian simple knot are Legendrian
simple, it is only useful if there are many knots that satisfy the UTP. The following results establish
this.

Theorem 13 (Etnyre, Honda [10]). Negative torus knots satsify the UTP.
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We also have a more general theorem, that certain cables of knots that satisfy the UTP, also
satisfy the UTP.

Theorem 14 (Etnyre, Honda [10]). If a knot type K satisfies the UTP, then for all pairs (p, q) such
that p

q < w(K), the (p, q) cable of K also satisfies the UTP.

Note that although negative torus knots are cables of the unknot satisfying the inequality above,
the unknot U does not satisfy the UTP (tb(U) = −1 while w(U) = 0) so theorem 13 does not follow
from theorem 14, however they can be proved using similar techniques. We will prove theorem 14
following the lines of Etnyre and Honda and omit a proof of theorem 13.

Proof. Suppose K is a knot satisfying the UTP and p
q < w(K). Let K(p,q) be the (p, q) cable of

K. In order to prove that K(p,q) satisfies the UTP, we must show each of the two properties in the
definition of the UTP are satisfied.
Property 1: w(K(p,q)) = tb(K).

By lemma 11 this is equivalent to showing that the maximal twisting of K(p,q) with respect to
the framing C(p,q)

K , denoted t(K(p,q), C
(p,q)
K ), is 0.

First we will show that t(K(p,q), C
(p,q)
K ) = 0 can be attained by a Legendrian knot K(p,q) ∈ K(p,q)

and thus

t(K(p,q), C
(p,q)
K ) ≥ 0

Since p
q < w(K), if we take a neighborhood N(K) of maximal thickness, then we can thin it

(lemma 9) to find a convex torus whose dividing curves have slope q
p . A Legendrian divide on such

a torus L satisfies t(L,C(p,q)
K ) = 0 and is a (p, q) cable of K.

Next we show that there are no neighborhoods of any K(p,q) ∈ K(p,q) whose boundary has dividing
curves of strictly positive slope.

Suppose N(p,q) is a neighborhood of K(p,q) ∈ K(p,q) with convex boundary, and there are two
dividing curves of slope s > 0. We can shrink 1

s as much as we want by thinning the torus.
Therefore we may assume that s is a large positive integer. Also we may isotope N(p,q) so that it
has Legendrian rulings of slope ∞ (with respect to C(p,q)

K ) by the Giroux flexibility theorem.
Now choose an annulus A such that R = N(p,q) ∪ A × [−ε, ε] is diffeomorphic to T 2 × I where

each boundary component is parallel to the boundary of a neighborhood of K (here A × [−ε, ε] is
[−ε, ε] invariant). Let N(K) be this solid torus neighborhood and suppose ∂R = T1 ∪ T2 where T1

is inside N(K) and T2 is outside N(K). Let ∂N(K) = T1.5.
If the dividing curves on A have any boundary parallel curves then we can find a bypass to thicken

N(p,q). Using lemma reffareylemma we compute that after the bypass the slope of the dividing curves
will be∞ (with respect to C(p,q)

K ), since there is a jump from s which is a positive integer to∞ and the
ruling curves have slope ∞. In this case we can find a convex annulus bounded by these Legendrian
divides which lies inside N(p,q). We can choose two Legendrian curves C1, C2 on the annulus which
divide it into two disks D1, D2 glued together along these curves. Then tb(∂D1) + tb(∂D2) = 0 since
the twisting along C1 and C2 cancels out in the sum, and the annulus is bounded by curves which
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have twisting 0. However this means that tb(∂Di) ≥ 0 for i ∈ {1, 2}, which means that there is
an overtwisted disk in N(p,q). Therefore A has two dividing curves, each of which begins on one
boundary component and ends on the other.

We can compare the slopes of the dividing curves T1 and T2, by computing the difference in
the slopes of the boundary curves when attaching the top half of ∂N(p,q) to A versus attaching
the bottom half of ∂N(p,q) to A. Because the slope on ∂N(p,q) is measured with respect to the
meridional curve of N(p,q), the slope on the top appears to be opposite the slope on the bottom
because counterclockwise around the meridional curve points to the left on the top and to the right
on the bottom. Therefore the dividing curves on T1 and T2 near each component of N(p,q) appear
as in figure 28. When the slope of the dividing curves on ∂N(p,q) is a positive integer s, the slope of
T2 is obtained by performing s+ 1 negative Dehn twists to the dividing curves of T1. Therefore we
may recoordinatize ∂N(K) so that slope(ΓT1) = −s, slope(ΓT2) = 1.

Figure 28. Attaching the two halves of ∂N(p,q) to the annulus A to obtain T1

(left) and T2 (right). When the slope of the dividing curves on ∂N(p,q) is a positive
integer s, the slope of T2 is obtained by performing s + 1 negative Dehn twists to
the dividing curves of T1.

Given T 2× [1, 2] with slope(ΓT1) = −s and slope(ΓT2) = 1, we can split T 2× [1, 2] into two basic
slices: T 2 × [1, 1.5] and T 2 × [1.5, 2], where slope(ΓT1.5) =∞. This splitting exists because ∞ is the
point on the Farey tessellation which has a jump to −s and 1.

The Poincaré duals of the relative half-Euler classes of the possible tight contact structures on
T 2× [1, 1.5] are ±((0, 1)−(−1, s)) = ±(1, 1−s). On T 2× [1.5, 2] they are ±((1, 1)−(0, 1)) = ±(1, 0).
Therefore there are four possible values of PD(e(ξ)) for T 2 × [1, 2] which are ±(1, 0)± (1, 1− s). If
one of the signs is + and the other is −, there is a mixing of signs at T1.5.

Let γ be a Legendrian ruling curve on A of slope ∞. Let A′ = γ × [−ε, ε]. We find out which
combination of basic slices is on our solid torus by computing 〈e(ξ), A′〉 = χ(A′+) − χ(A′−). Be-
cause A′ is [−ε, ε] invariant, its dividing set is {p1, · · · , pn} × [−ε, ε] where n is even, and A′+
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and A′− are the disks between the dividing curves (alternating between + and −). Therefore
〈e(ξ), A′〉 = χ(A′+)−χ(A′−) = 0. This tells us that PD(e(ξ)) = (0,±(1−s)) which means that there
is mixing of sign. Such a mixing of signs cannot happen when the slope is not a negative integer or
the reciprocal of a negative integer (lemma 10). This provides a contradiction to the fact that there
is a neighborhood of K(p,q) whose boundary has dividing curves of positive slope.

Property 2: Every neighborhood N(p,q) of a Legendrian knot of type K(p,q) can be thickened
to a standard neighborhood (in the sense of 16) of a Legendrian knot K(p,q) with t(K(p,q), C

(p,q)
K ).

SupposeN(p,q) is a neighborhood ofK(p,q) ∈ K(p,q), with convex boundary such that slope(Γ∂N(p,q)) =
s where −∞ < s < 0 (since we have eliminated the possibility that s > 0 in step 1). Isotope N(p,q) so
that it has Legendrian rulings of slope∞. LetR = A×[−ε, ε]∪N(p,q)

∼= T 2×I and Ti = T 2×{i} ⊂ ∂R
as in step 1. If A has any boundary parallel curves, then there is a bypass for N(p,q) to a new solid
torus N ′(p,q) with dividing curves of slope s′ where −∞ < s′ < 0, which is the same situation we
started with. Therefore we can assume that A has dividing curves which are parallel arcs that begin
and end on different boundary components. Since A× [−ε, ε] is [−ε, ε] invariant, the dividing curves
on A × {±ε} are the same as those on A. After smoothing the edges on R the dividing curves on
the boundary can have a wide range of slopes, but they cannot have slope q

p with respect to CK.
Furthermore, the slope of T1 (the lower boundary component) will be less than the slope of T2 (the
upper boundary component). See figure 29 and its caption for a detailed explanation.

Figure 29. One piece of R = N(p,q)∪A×[−ε, ε] with dividing curves and smoothing
of edges. The front and back faces are identified. The arrows indicate the positive
directions when each surface is identified with R2/Z2 so that the slope can be
determined. No matter what slope you choose for the dividing curves of A, the
dividing curves after smoothing will never be parallel to A × {±ε} ∩ N(p,q) (slope
∞). After smoothing, the dividing curves on the lower boundary component (T1)
have a more negative slope than those on the upper boundary component (T2). This
is because the counterclockwise direction around the meridian of N(p,q) opposes the
orientation of the meridian of T2 (subtracts a negative slope) and agrees with the
orientation of the meridian of T1 (adds a negative slope).

Recall that T1 and T2 are parallel to the boundary of a neighborhood of K, N(K) and T1 ⊂ N(K)
and T2 ⊂ S3 \N(K). Because the interval between the slopes of the dividing curves on T1 and T2
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Figure 30. The red box is the thickened annulus (identify front and back sides).
After attaching this thickened annulus to the torus N(p,q) (here represented by the
cylinder), we obtain a thickening of N(p,q) with dividing curves of slope ∞ with
respect to C(p,q)

K .

does not contain q
p , there are no tori isotopic to Ti in R whose dividing curves have slope q

p . Since
K satisfies the UTP, and p

q < w(K) = tb(K), N(K) can be thickened to a solid torus N ′(K), whose
boundary has dividing curves of slope qp with respect to CK. This allows us to find a thickening for
N(p,q) to a neighborhood of K(p,q) with dividing curves of slope ∞ with respect to C(p,q)

K by adding
a thickened annulus as in figure 30. The top part of the thickened annulus is an annulus B cut out
of ∂N ′(K) which has dividing curves of slope q

p in coordinates CK which is paralle to curves of slope

∞ on on N(p,q) in coordinates C(p,q)
K . We attach the sides of the thickened annulus S1, S2, to B along

its boundary which is made up of two Legendrian divides in parallel to the dividing curves of B.
We attach S1, S2 to ∂N(p,q) along ∂N(p,q) ∩A×{ε}. Since the dividing curves on B do not intersect
the boundary of B, any dividing curves on S1 or S2 must be boundary parallel to Si ∩N(p,q). After
smoothing the edges where ∂N(p,q) meets S1 and S2, the boundary parallel disks must attach to the
dividing curves of ∂N(p,q) so that they are parallel to the dividing curves on B of slope ∞ based on
the classification of dividing curves on convex tori in tight contact structures. Therefore attaching
the thickened annulus to N(p,q) gives a thickening of N(p,q) whose boundary has dividing curves of
slope ∞ in C(p,q)

K .
Finally, to show that K(p,q) satisfies the UTP, we need to show N(p,q) thickens to a standard

neighborhood, namely one with exactly 2 dividing curves of slope tb(K) (which is slope ∞ with
respect to C(p,q)

K ). This follows from Honda’s classification of tight contact structures on solid tori,
which finds a non-rotative thickening to a torus with only 2 dividing curves.

�
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4.5. Sufficiently Positive Cables. The proof of theorem 11 is split into two parts. We will first
prove that (p, q) cables of K with p

q > w(K) are Legendrian simple (such cables will be called
sufficiently positive cables), and then show that cables where p

q < w(K) are Legendrian simple (such
cables will be called sufficiently negative cables). Now we look at the former case.

Lemma 12. Suppose K satisfies the UTP. If K(p,q) is a sufficiently positive cable of K with maximal
tb then it lies on the boundary of a standard neighborhood of K ∈ K with maximal tb.

Proof. The key to this proof relies on the following theorem from Kanda:

Theorem 15 (Kanda [17]). Let C be a Legendrian curve on a convex surface F . Then

tb(C) = lk(C,C ′)− 1
2

#(C ∩ ΓF )

where C ′ is a curve obtained by pushing C slightly in the positive normal direction of F , and #(C ∩
ΓF ) is the number of times C intersects ΓF .

This tells us that tb(K(p,q)) is maximal when the number of intersection points of K(p,q) with the
dividing set on T is minimized. Because K(p,q) intersects ΓT efficiently, we can compute the number
of intersections from their slopes. Let slope(ΓT ) = m

n in coordinates CK. Under these coordinates,
the slope of K(p,q) is q

p so

#(K(p,q) ∩ ΓT ) = (#ΓT ) det

[
n m

q p

]
= (#ΓT )|np− qm|

I claim that this is minimized over all possible slopes of the dividing curves on T when
m

n
=

1
w(K)

=
1

tb(K)

This is because |np−mq| is minimized when the slope(ΓT ) = m
n is chosen such that np−mq is as

close as possible to 0. This happens when n
m is as close as possible to q

p . Because we are looking at
the sufficiently positive case, p

q > w(K) > 1
s for any possible s =slope(ΓT ). Therefore |np −mq| is

minimized when m
n = 1

w(K) . �

Step 1: Maximal tb Legendrian knots are determined by their rotation number, and the set of
rotation numbers of maximal tb Legendrian knots is

{q · r(L)|L ∈ K, tb(L) = w(K)}

Suppose K(p,q) has maximal tb. Using the previous lemma, K(p,q) lies on the boundary of a
standard neighborhood of K ∈ K of maximal tb. This allows us to compute the possible rotation
numbers for K(p,q) using the following formula:

Lemma 13 (Etnyre, Honda [10]). Let D be a convex meridonal disk of N(K) with Legendrian
boundary on ∂N(K) and Σ a convex Seifert surface with Legendrian boundary K ∈ K, K ⊂ ∂N(K).
Then

r(K(p,q)) = p · r(∂D) + q · r(∂Σ)
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Figure 31. A case where K(p,q) (purple) does not intersect the dividing curves
(grey) of T efficiently. The + and − signs indicate the oriented intersection numbers
of K(p,q) with ΓT .

Since N(K) is a standard neighborhood of K whose boundary has dividing curves of slope 1
n ,

∂D intersects each of the two dividing curves once. Therefore D can have only one dividing curve
which has its endpoints on ∂D. Then D is contactomorphic to the standard Seifert surface of the
standard unknot which has rotation number 0. Therefore r(∂D) = 0. The lemma then implies
r(K(p,q)) = q · r(K) so the rotational number of K(p,q) is determined by the rotation number of K,
the Legendrian knot at the core of the torus that K(p,q) lies on. Now suppose we have two Legendrian
knots K(p,q),K

′
(p,q) ∈ K(p,q) with maximal tb and the same rotation number. Then they lie on the

boundaries of solid tori N,N ′ whose core curves are Legendrian knots K,K ′ ∈ K respectively each
with convex boundary and slope(Γ∂N ) =slope(Γ∂N ′) = 1

w(K) . Since K(p,q) and K ′(p,q) have the same
rotation numbers the above implies K and K ′ have the same rotation numbers. Since K is assumed
to be Legendrian simple this means that K and K ′ are Legendrian isotopic. Thus we can assume
that K = K ′ and V = N ∩N ′ is another solid torus with convex boundary and slope(Γ∂V ) = 1

w(K) .
∂V has ruling curves of slope q

p . N \V and N ′ \V are isotopic to T 2× I with an I-invariant contact
structure, therefore we can Legendrian isotope K(p,q) and K ′(p,q) onto ∂V . Then they are Legendrian
isotopic on ∂V through other ruling curves.
Step 2: Knots with less than maximal tb destabilize.

Suppose K(p,q) ∈ K(p,q) has tb(K(p,q)) < tb(K(p,q). Find a neighborhood N(K) whose boundary
is a convex torus T such that K(p,q) ⊂ T . Because p

q > w(K) = sup 1
slope(ΓT ) , we can choose a

dividing set on T that intersects all curves of slope q
p transversely. By Giroux’s Flexibility Theorem

(Theorem 8) we may assume that the Legendrian rulings of T are the curves of slope q
p .

If K(p,q) does not intersect ΓT efficiently (the geometric intersection number is equal to the actual
intersection number), then we can destabilize it. This is because the only way K(p,q) could intersect
ΓT first with one sign and then with a different sign, is if K(p,q) bounds a disk with ΓT between
these two intersections points of opposite intersection sign (Figure 31). This means we have a part
of the dividing set that is parallel to K(p,q), indicating there is a bypass along K(p,q) which gives a
destabilization of K(p,q).

Now suppose K(p,q) intersects ΓT efficiently. Because tb(K(p,q)) 6= tb(K(p,q)), we know that
slopeΓT 6= 1

w(K) because otherwise the argument in step 1 using theorem 15 would indicate that
K(p,q) has maximal tb. Since K satisfies the UTP, N(K) can be thickened to a solid torus with
boundary T ′ such that slope(ΓT ′) = 1

w(K) . This thickening of N(K) is done by attaching a bypass
disk along the Legendrian rulings of T . Since the Legendrian rulings are Legendrian isotopic to
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Figure 32. A “mountain range” representing the values of (r, tb) which are realized
by Legendrian knots of a given knot type. A stabilization of a knot changes (r, tb)
so that the dot moves diagonally down. The valleys (dots with red centers) are
the first places where knots with distinct (r, tb) values stabilize in different ways to
produce two knots with the same value of (r, tb). We need to check whether or not
these knots are Legendrian isotopic to determine Legendrian simplicity.

K(p,q) (we assumed the Legendrian rulings have slope q
p ), this bypass provides a destabilization of

K(p,q).
Step 3: For each value of (r, tb), there is at most one Legendrian knot of type K(p,q) up to Legendrian
isotopy.

Steps 1 and 2 tell us that all Legendrian knots of type K(p,q) are stabilizations of those with
maximal tb, and the rotation numbers of these knots with maximal tb are multiples of q. Recall that
stabilizations decrease tb by 1, and change the rotation number by ±1. Therefore we simply need to
check when two knots of maximal tb but different rotation numbers, have stabilizations which share
the same values for tb and r.

Because of the distribution of the rotation numbers of the maximal tb Legendrian knots, this
amounts to showing the following. If two Legendrian knots, K(p,q),K

′
(p,q) with maximal tb, have

r(K(p,q))− r(K ′(p,q)) = 2qn for some n ∈ Z then Sqn− (K(p,q)) is Legendrian isotopic to Sqn+ (K ′(p,q)).
These are all the “valleys” in a diagram like figure 32, which indicate with a dot, the (r, tb)

coordinates that are realized by Legendrian knots of a given knot type. The valleys correspond to
the places where stabilizations of distinct knots first meet. The peaks are given by the knots which
do not destabilize.

The key point here is that if K(p,q) lies on a standard neighborhood of K then Sq−(K(p,q)) lies on
a standard neighborhood of S−(K). Suppose K(p,q) and K ′(p,q) lie on standard neighborhoods of K
and K ′ respectively where K,K ′ have maximal tb. Then

qr(K)− qr(K ′) = r(K(p,q))− r(K(p,q)) = 2qn

so

r(K)− r(K ′) = 2n

Also Sqn− (K(p,q)) lies on a standard neighborhood of Sn−(K) and Sqn+ (K ′(p,q)) lies on a standard
neighborhood of Sn+(K ′). Since K,K ′ ∈ K which is Legendrian simple and Sn−(K) and S+(K ′) have
the same tb and rotation number, Sn−(K) is Legendrian isotopic to S+(K ′). Then we can use the
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method from the end of Step 1 to show that K(p,q) is Legendrian isotopic to K ′(p,q). Thus completing
the proof for sufficiently positive cables.

4.6. Sufficiently Negative Cables. The proof for cables where sufficiently negative has the same
structure as the proof for sufficiently positive cables, but differs in details.
Step 1: Maximal tb Legendrian knots are determined by their rotation number, and the set of
rotation numbers for Legendrian knots in K(p,q) with maximal tb is

{±(p+ q(n+ r(L)))|L ∈ K, tb(L) = −n}
where n is the integer such that

−n− 1 <
p

q
< −n

We want to use the formula for the rotation number of a cable in lemma 13. Let N(K) be a
neighborhood of K such that K(p,q) ⊂ ∂N(K) where ∂N(K) is convex. We need to compute the
rotation numbers of the boundary of a meridional disk D of N(K) and the boundary of a Seifert
surface Σ for a Legendrian curve of slope ∞ with respect to CK on ∂N(K). Since slope ∞ is defined
by the longitude of N(K), Σ can be extended to a Seifert surface for the core of N(K).

In order to simplify the computations for r(∂D) and r(∂Σ), we decompose D and Σ into com-
ponents we understand well. The idea is to find a smaller solid torus N1, inside N(K) which has
dividing curves of slope 1

k for some integer k. Then let D = D′∪A where D′ is a meridional disk of N ′

whose boundary is Legendrian and intersects the dividing curves of N ′ efficiently. In this situation
r(∂D′) = 0 via the argument given in Step 1 in the case of sufficiently positive cables. Similarly we
choose a thicker solid torus N2 containing N(K) which has dividing curves on its convex boundary
of slope 1

` for an integer `. We decompose Σ = Σ′ ∪B where Σ′ is a Seifert surface for a Legendrian
curve on ∂N2 of slope ∞ with respect to CK and such that ∂Σ intersects the dividing curves of ∂N2

efficiently. Then

r(∂Σ) = r(∂Σ′) + χ(B+)− χ(B−) = r(∂Σ′) + 〈e(ξ), B〉
and

r(∂D) = r(∂D′) + 〈e(ξ), A〉 = 〈e(ξ), A〉
Therefore we need to know the relative half-Euler class e(ξ) for T 2 × [1, 2] and understand its

relation to A and B. To do this we choose N1 and N2 carefully. Identify N2 \ N1 with T 2 × I so
∂Ni = Ti = T 2 × {i}. We want the slopes of the dividing curves on T1 and T2 to be − 1

n and − 1
n+1

respectively, where
−n− 1 <

p

q
< −n

We choose these particular slopes so that T 2× [1, 2] is a basic slice. Then Honda’s classification [14]
describes all the possible tight contact structures on T 2×[1, 2]. From this classification, we know that
the Poincaré dual of the relative half-Euler class of this T 2×[1, 2] is either (−n, 1)−(−n−1, 1) = (1, 0)
or its negation. This allows for two possible combinations of relative half-Euler classes on T 2×[1, 1.5]
and T 2 × [1.5, 2]. The first is that

PD(e(ξ), T 2 × [1, 1.5]) = (p, q)− (−n− 1, 1) and PD(e(ξ), T 2 × [1.5, 2]) = (−n, 1)− (p, q)

The second is that

PD(e(ξ), T 2 × [1, 1.5]) = −(p, q) + (−n− 1, 1) and PD(e(ξ), T 2 × [1.5, 2]) = −(−n, 1) + (p, q)

B is an annulus in T 2× [1.5, 2] with boundary going along the longitudes of T 2×{1.5, 2} (which are
parallel to the (1, 0) in these coordinates) so 〈e(ξ), B〉 = ±(p+ n) and

r(Σ) = r(K)± (p+ n)
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where K = ∂Σ′ is a Legendrian knot of type K on T 2 × {2} which intersects the dividing curves on
T 2 × {2} (which have slope − 1

n ) efficiently and thus has tb(K) = −n. Similarly A is an annulus in
T 2 × [1, 1.5] with boundary going along the meridians of T 2 × {1, 1.5} (which are parallel to (0, 1)),
so 〈e(ξ), A〉 = ±(1− q) and

r(∂D) = r(∂D′)± (1− q) = ±(1− q)
This gives us either

r(K(p,q)) = p(1− q) + q(r(K) + p+ n) = p+ q(r(K) + n)

or
r(K(p,q)) = −p(1− q) + q(r(K)− p− n) = −p+ q(r(K)− n)

Because the possible rotation numbers of a Legendrian knot with a specfied tb are symmetric around
0, for every value r(K) there is another Legendrian knot K ′ ∈ K with tb(K ′) = tb(K) and r(K ′) =
−r(K). Thus we can replace r(K) in the second equation above with −r(K). Then we get that the
set of rotation numbers of Kp,q ∈ K(p,q) with maximal tb is

{±(p+ q(r(K) + n)) : K ∈ K, tb(K) = −n}
Step 2: Knots with less than maximal tb destabilize.

Since p
q < w(K), K(p,q) satisfies the UTP by theorem 14. Therefore if K(p,q) has less than maximal

tb, its standard neighborhood (for which the slope of the dividing curves on the boundary is q
p ) can

be thickened to a solid torus such that the slope of the dividing curves is 1/tb(K(p,q). Thickening
corresponds to a sequence of bypass disks which provide destabilizations for K(p,q).
Step 3: For pairs (tb, r) which can be obtained through stabilizations from multiple different max-
imal tb Legendrian knots, there is a unique Legendrian knot with that tb and r.

Using the distribution of rotation numbers for maximal tb cables given in step 1, we can find the
first places where two sequences of stabilizations of two distinct Legendrian knots K(p,q),K

′
(p,q) ∈

K(p,q) result in Legendrian knots of the same (r, tb) pair. This happens when two maximal tb
Legendrian knots of type K(p,q) are next to each other, and they stabilize in opposite r directions to
meet in a valley as in figure 32. This occurs in two situations.

Situation 1: We have two maximal tb Legendrian knots, K(p,q) and K ′(p,q) with r(K(p,q)) =
p+ qn+ qr(K) and r(K ′(p,q)) = −p− qn+ qr(K) for some K ∈ K with tb(K) = −n. Then

r(S−p−qn+ (K(p,q))) = r(S−p−qn− (K ′(p,q))) = qr(K)

and
tb(S−p−qn+ (K(p,q))) = tb(S−p−qn− (K ′(p,q))) = tb(K(p,q)) + p+ qn

(Note that −p− qn > 0 because p
q < −n.)

Suppose we have any Legendrian knot L(p,q) ∈ K(p,q) with the values r(L(p,q)) = qr(K) and
tb(L(p,q)) = tb(K(p,q)) + p+ qn. Then L(p,q) lies on the boundary of a standard neighborhood N(K)
of K where tb(K) = −n as above, and L(p,q) is a Legendrian ruling curve of slope q

p on ∂N(K). It is
also true that S−p−qn− (K ′(p,q)) and S−p−qn+ (K(p,q)) are Legendrian ruling curves of the same slope on
N(K). Therefore L(p,q) is Legendrian isotopic to S−p−qn− (K ′(p,q)) and S−p−qn+ (K(p,q)) through the
Legendrian realization principle. This shows that any Legendrian knot with (r, tb) in a valley from
this situation destabilizes in two ways.

Situation 2: We have two maximal tb Legendrian knots, K(p,q) and K ′(p,q) with r(K(p,q)) =
p + qn + qr(K) and r(K ′(p,q)) = −p − qn + qr(K ′) for two Legendrian knots K,K ′ ∈ K with
tb(K) = tb(K ′) = −n such that there does not exist any other Legendrian knot K ′′ ∈ K with
tb(K ′′) = −n and r(K) < r(K ′′) < r(K ′). Then
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r(Sp+qn+qm
− (K(p,q))) = r(Sp+qn+kqm

+ (K ′(p,q))) = q(r(K)−m) = q(r(K ′) +m)

for somem ∈ Z+, and these knots have the same tb since they are p+qn+qm stabilizations of maximal
tb knots. Then for any Legendrian L(p,q) ∈ K(p,q) with these values (r(L(p,q)) = q(r(K) − m) =
q(r(K ′) + m) and tb(L(p,q)) = tb(K(p,q) − p − qn − qm). Then L(p,q) lies on the boundary of a
standard neighborhood of Sk+(K) = Sk−(K ′) as a Legendrian ruling curve of slope q

p . Then L(p,q)

is Legendrian isotopic to Sp+qn+qm
− (K(p,q)) and Sp+qn+qm

+ (K ′(p,q)), so it destabilizes in two ways as
desired.
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5. Transversely Nonsimple Knots

5.1. Transverse Simplicity. We have so far been discussing knots which are Legendrian simple.
It turns out that it is significantly more difficult to find knots which are transversely simple. A knot
can be transversely simple without being Legendrian simple. However, we can understand transverse
simplicity entirely through a classification of the Legendrian knots. To do this we must understand
the following notion.

Definition 17. A knot K is stably simple if for every pair of Legendrian knots, K,K ′ which have
the same values for (r, tb), there exists some n ≥ 0 such that Sn−(K) = Sn−(K ′).

One reason for using negative stabilizations only is because we obtain the following stable invariant
of Legendrian knots,

s(K) = tb(K)− r(K)
Because this is invariant under positive stabilizations, we have the following equivalent definition of
stably simple:

Definition 18. A knot K is stably simple if and only if for any Legendrian knots, K,K ′ ∈ K such
that s(K) = s(K ′) there are positive integers n,m such that Sn+(K) = Sm+ (K ′).

s(K) is a particularly useful invariant because if T+(K) is the positive transverse pushoff of K
then sl(T+(K)) = s(K). We can use this to understand transverse simplicity, due to the following
theorem:

Theorem 16 (Etnyre, Honda [9]). A knot is transversely simple if and only if it is stably simple.

In the proof of this theorem we will use the following lemma, which can be proved in a similar
manner to the Legendrian standard neighborhood theorem.

Lemma 14. Every transverse knot has a neighborhood contactomorphic to

Nε = {r, θ, z) ∈ R2 × S1 : r < ε}

where the contact structure on R2 × S1 is ker(dz + r2dθ).

Proof of theorem 16. Suppose K is stably simple. Let τ1 and τ2 be transverse knots of type K with
sl(τ1) = sl(τ2). There are standard transverse neighborhoods Nεi

of τi as in lemma 14. For m ∈ Z+

sufficiently large, (we need 1√
m
< εi) define

T im =
{

(r, θ, z) ∈ R2 × S1 : r =
1√
m

}
⊂ Nεi (i = 1, 2)

Since the tangent space to T im at any point is {a ∂
∂θ + b ∂∂z} and the contact structure on Nεi

is
ker(dz + r2dθ), the intersection of the tangent planes with the contact planes occurs when

dz

(
a
∂

∂θ
+ b

∂

∂z

)
+
(

1√
m

)2

dθ

(
a
∂

∂θ
+ b

∂

∂z

)
= 0

b+
1
m
a = 0

So the the characteristic foliation is given by curves of slope− 1
m corresponding to the vectorm ∂

∂θ−
∂
∂z

on T im. Now look at a leaf Lim of the characteristic foliation on T im (any curve of slope − 1
m ). Note
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Figure 33. Annulus which shows that the core of Nε is the positive transverse
pushoff of the Legendrian curves Lm.

that a negative stabilization on Lim adds in a negative Dehn twist, so S−(Lim) = Lim+1. This gives
us two families, F1 = {L1

m : m ≥ 1
ε21
} and F2 = {L2

m : m ≥ 1
ε22
} of Legendrian knots where all knots

in a given family are related by negative stabilization. Furthermore, we can find an annulus in Nεi

with one boundary component along the core curve τi and the other boundary component along Lim
such that the tangent planes to the annulus coincide with the contact planes along Lim (see figure
33), which shows that τi is the positive transverse pushoff of Lim for all m.

Since Lim and Lin are related by negative stabilizations, their stable invariants are equal, s(Lim) =
s(Lin) for all n,m ≥ 1

ε2i
, for i = 1 or 2. Then since τ1, τ2 ∈ K, we also have Lim ∈ K for i = 1, 2,

m ≥ 1
ε2i

. Furthermore s(L1
m) = sl(τ1) = sl(τ2) = s(L2

n) for sufficiently large m,n. Because K is
stably simple, this means that there exist m1,m2 such that L1

m1
is Legendrian isotopic to L2

m2
. Since

τ1 is the positive transverse pushoff of L1
m1

and τ2 is the positive transverse pushoff of L2
m2

, this
tells us that τ1 is transversely isotopic to τ2 since the positive transverse pushoff is well-defined.

Now we show the other direction. Suppose K is transversely simple, and let K,K ′ ∈ K be Leg-
endrian knots where s(K) = s(K ′). Take the annulus A = S1 × [−ε, ε] where S1 × {0} = K whose
tangent planes along K coincide with the contact planes. The positive transverse pushoff of K is
the curve T+(K) = S1×{ ε2}. Now thicken A to get a neighborhood N of T+(K) such that copies of
K are Legendrian divides on ∂N . By recoordinatizing we may assume T+(K) is the core of N and
K has slope − 1

n on ∂N .
We can do the same for K ′ to get a neighborhood N ′ of T+(K ′). Because s(K) = s(K ′),

sl(T+(K)) = sl(T+(K ′)). Since K is transversely simple T+(K) is transversely isotopic to T+(K ′).
Therefore via a contactomorphism we may assume that the core curves of N and N ′ are the same.
Furthermore there is a standard transverse neighborhood Nε inside N and N ′ as in lemma 14. As
before we have tori Tm inside Nε whose characteristic foliations are composed of Legendrian curves
Lm of slope − 1

m .
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We will show that K can be negatively stabilized to obtain Lm for some m. The same will hold
for K ′ and thus we will have shown that K is stably simple. We may isotope Tm such that it is a
convex surface with Lm as a Legendrian divide, and ruling curves of slope − 1

n which is the slope of
K on ∂N . Then take an annulus in N \Nε with one boundary component being K on ∂N and the
other being a Legendrian ruling curve on Tm. Since K is a Legendrian divide, the dividing curves
of the annulus do not intersect K, so any dividing curves on the annulus are boundary parallel to
Lm. This shows that through a sequence of destabilizations we can get from Lm to K. We need
to know these are all negative stabilizations. If some were positive stabilizations then the value of
s(K) would differ from s(Lm). However both K and Lm share the same positive transverse pushoff,
so they must have the same value for their stable invariants. This shows that Lm is a negative
stabilization of K. Repeating for K ′ completes the proof.

5.2. Finding neighborhoods that do not thicken. While cables of Legendrian simple knots that
do satisfy the UTP are Legendrian simple and thus are transversely simple, cables of Legendrian
simple knots that do not satisfy the UTP need not be. We will prove that in fact, the (2, 3) torus
knot does not satisfy the UTP and none of its positive cables are transversely simple. The idea of
the proof is to find numerous solid tori representing K which do not thicken. This shows that K
does not satisfy the UTP. We use these tori to find cables which do not have maximal tb but do not
destabilize. It turns out that a stabilization of the maximal tb representatives of that cable provides
a knot of the same type and values of (r, tb) as the knot which does not destabilize. This will show
that such cables are not Legendrian simple. We then make a further argument to show that the knot
is not stably simple. By theorem 16, this will show that the cable is not transversely simple. While
it seems likely that this argument extends to cables of a general (p, q) torus knot where p, q > 0,
extending the proof to this more general setting would require a better understanding of certain
properties of the twisting of the contact structures on S1 bundles over a general genus g surface
than what is so far known. While there is a classification of tight contact structures on S1-bundles,
it does not describe the maximal twisting of the fibers, as in the classification on T 3. We will work
in the general setting for the first part of this proof and will discuss exactly what is needed to extend
the rest of the argument to the general case.

5.2.1. Necessary condition on maximally thickened neighborhoods. Let K be the (p, q) torus knot.
First we will look at how a solid neighborhood N of K ∈ K sits in relation to standard neighborhoods
N1 and N2 in S3 \N of Legendrian knots U1 ∈ U1 and U2 ∈ U2 respectively. Recall that U1 and U2

are the core curves of unknotted solid tori which provide a Heegaard splitting of S3. Suppose

tb(U1) = −m1 and tb(U2) = −m2

We know tb(U) = −1 so m1 and m2 will always be positive integers. Because N1 and N2 are
standard neighborhoods of U1 and U2, slope(Γ∂N1 = − 1

m1
and slope(Γ∂N2) = −m2 with respect to

the coordinate system CU1 .
We will switch to the coordinates C(p,q) on ∂N1 and ∂N2 to make it more convenient to compare

slopes on ∂N1 and ∂N2 with the (p, q) torus knot. We can find the slopes of the dividing curves on
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∂Ni in these coordinates using the transformations in equations 6 and 7.[
q −p

−y x

][
−m1

1

]
=

[
−qm1 − p

ym1 + x

]
[
−p q

x −y

][
−m2

1

]
=

[
pm2 + q

−xm2 − y

]
So

(8) slope(Γ∂N1) = −ym1 + x

qm1 + p

and

(9) slope(Γ∂N2) = −xm2 + y

pm2 + q

In this coordinate system S3 \ (N1 ∪N2) ∼= T 2 × [1, 2] where T1 = ∂N1 and T2 = ∂N2. We will
think of K as sitting on T1.5. K has slope∞ on T1.5 under the coordinates C(p,q). The neighborhood
N of K (a (p, q) torus knot) has coordinates on its boundary given by C(p,q)

U . In this situation, the
lines of slope ∞ on ∂N are parallel to the lines of slope ∞ on T .

Now choose an annulus A′ whose interior is in S3 \ (N ∪N1∪N2) where ∂A′ = γ1∪γ2 where γi is
a curve of slope ∞ on ∂Ni. Let A′× [−ε′, ε′] be a [−ε′, ε′] invariant neighborhood of A′ = A′×{0}.
Then ∂(N1 ∪A′ × [−ε′, ε′] ∪N2) is isotopic to ∂N . See figure 34.

N1

N2

N
A’

Figure 34. The front and back sides are identified and the left and right sides
are identified. The square on the top face is ∂N1 and N1 lies above the top face.
Similarly the bottom face is ∂N2 where N2 lies below. N (red) lies in between
and runs parallel to the curves of slope ∞ on ∂N1 and ∂N2 with respect to the
coordinates C(p,q). A′ is the annulus on the left (identified with the right) side of
the box. A′ × [−ε′, ε′] is highlighted in blue. Note that ∂(N1 ∪N2 ∪ A′ × [−ε′, ε′])
is isotopic to ∂N .

If we chose an N that cannot be thickened any further, and we thicken N1 and N2 as much as
possible in the complement of N , then the space between N and N1 ∪N2 ∪A′× [−ε′, ε′] will simply
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be an I-invariant neighborhood of ∂N (i.e. N essentially is S3 \ (N1 ∪ N2 ∪ A′ × [−ε′, ε′]). Thus
we can determine the dividing sets for N that do not thicken by determining the dividing set of
∂(N1 ∪ N2 ∪ A′ × [−ε, ε]) when N1 and N2 are maximally thickened in the complement of N . We
will determine conditions on the dividing sets of N2, N2, and A′.

If any of the dividing curves on A′ are boundary parallel, they would provide a bypass along N1

or N2. Suppose we have thickened N1 and N2 as much as possible in the complement of N (or
equivalently chosen U1 and U2 to have the maximal possible tb in the complement of N). Then we
may assume that A′ has no boundary parallel curves so the number of intersections of the dividing
curves with each boundary component is the same.

Lemma 1 shows that when two convex surfaces S1 and S2 intersect at a curve γ, the points in
ΓS1 ∩γ alternate with the points in ΓS2 ∩γ and thus |ΓS1 ∩γ| = |ΓS2 ∩γ| (where | · | indicates number
of points in the intersection). Let α be the number of times the dividing curves on A′ intersect each
boundary component. Then the dividing curves on ∂Ni intersect A′ ∩ ∂Ni α times for i = 1, 2.

On the other hand we know that ∂Ni ∩A′ is a curve of slope ∞ on ∂Ni (i = 1, 2). Since we have
computed the slopes of the dividing curves on ∂Ni, we can compute how many times each of the two
dividing curves on ∂Ni intersects A′ ∩ ∂Ni by taking the denominator of slope(Γ∂Ni) (this gives the
dot product of the vector representing slope∞ with the vector representing slope(Γ∂Ni

)). Therefore
α = 2(qm1 +p) and α = 2(pm2 + q). This tells us that when we take maximally destabilized U1 and
U2, qm1 + p = pm2 + q. We can find all solutions to this equation by setting

(10) m1 = 1 + pk and m2 = 1 + qk

and taking all k ∈ Z, k ≥ 0. Then

(11) α = 2(q(1 + pk) + p) = 2qpk + 2q + 2p

Now we want to determine the possible slopes of a maximally thickened ∂N or equivalently the
slope of ∂(N1 ∪N2 ∪ (A′ × [−ε, ε])). We do not know the slope on the dividing curves on A′ ×{−ε}
or A′ × {ε} but we know that they have the same slope. Because the orientation on A′ × {−ε} will
be opposite the orientation on A′ × {ε} when they are considered as parts of a torus as in figures
34 and35, the two slopes will cancel each other out. Thus, we can assume that the dividing curves
of A′ are simply α = 2qpk + 2q + 2p vertical lines. The orientation of ∂N1 is the opposite of the
orientation inherited on the section of ∂N1 as part of ∂(N1 ∪ N2 ∪ (A′ × [−ε, ε])). Therefore the
slope of the dividing curves on ∂(N1 ∪N2 ∪A′ × [−ε′, ε′]) is given by the equation:

−slope(Γ∂N1) + slope(Γ∂N2) +
2
α

where 2
α is a correction term which comes from smoothing the edges (see figure 35).
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Figure 35. The dividing curves on ∂(N1 ∪N2 ∪ (A′ × [−ε, ε])) or equivalently on
∂N . The edges are smoothed on the right.

Plugging in the values we computed for the slopes of ∂N1 and ∂N2 (equations 8, 9), the values
for m1, m2, and α (equations 10, 11), and using the fact that xq − yp = 1, we get

slope(Γ∂N ) = slope(Γ∂(N1∪N2∪(A′×[−ε,ε]))

= −slope(Γ∂N1) + slope(Γ∂N2) +
2
α

=
ym1 + x

qm1 + p
− xm2 + y

pm2 + q
+

2
2pqk + 2q + 2p

=
y(1 + pk) + x− x(1 + qk) + y + 1

pqk + p+ q

=
k(yp− xq) + 1
pqk + p+ q

=
−k − 1

pqk + p+ q

where k ∈ Z, k ≥ 0. Note that if we view this as a slope for N , the coordinate system we are using
is actually C(p,q)

U because slope∞ is given by lines parallel to the standard (p, q) cable of the unknot
on the standard torus (since we were using coordinates C(p,q) on ∂N1 and ∂N2), and slope 0 is given
by a meridian. See figure 36.

This shows that if N is a neighborhood of K, the (2, 3) torus knot, which does not thicken, then
its dividing curves have slope − k+1

pqk+p+q for some k ∈ Z, k ≥ 0.

5.2.2. Existence of candidate neighborhoods in (S3, ξstd). Now we must check whether all values of
k give slopes of dividing curves on N which can be realized in (S3, ξstd). Note that k = 0 gives
slope − 1

p+q which is the slope of the standard neighborhood of the maximal tb (p, q) torus knot, so
at least for k = 0, the neighborhood is realized and does not thicken.
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∂ N1

∂ N2

N
∞

∞

0

0

0

∞

Figure 36. Coordinates C(p,q) on ∂N1 and ∂N2. Coordinates C(p,q)
U on ∂N .

Let Nk be a solid torus representing K with dividing curves of slope − k+1
pqk+p+q in coordinates

C(p,q)
U . Changing to coordinates CK,[

1 pq

0 1

][
−pqk − p− q

k + 1

]
=

[
−p− q + pq

k + 1

]
the slope of the dividing curves on Nk is

k + 1
pq − p− q

To determine whether we actually find a tight contact structure on Nk with this dividing set, such
that Nk glues to its complement in S3 to give the unique tight contact structure on S3, we need to
classify the possible tight contact structures on Nk. The classification of tight contact structures on
solid tori is given by the following theorem:

Theorem 17 (Honda [14]). Suppose S1 ×D2 has convex boundary T 2, where #ΓT 2 = 2.
(a) Suppose slope(ΓT 2) = −mn , m > n > 0, (m,n) = 1. Suppose

−m
n

= r0 −
1

r1 − 1
r2−···− 1

rk

where ri < −1 for 0 ≤ i ≤ k. Then there are exactly |(r0 + 1)(r1 + 1) · · · (rk−1 + 1)(rk)| tight contact
structures on S1 ×D2 with the given boundary condition (up to isotopy relative the boundary). Of
these tight contact structures, exactly 2 of them are universally tight.

(b) If slope(ΓT 2) = −1 then there is a unique tight contact structure on S1 × D2 which is con-
tactomorphic to a standard neighborhood of a Legendrian core curve of S1 ×D2 of twisting number
−1. This tight contact structure is universally tight.

(c) If slope(ΓT 2) = k
` where k

` > −1 then apply a change of coordinates corresponding to Dehn
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twists through multiplication by

C =

[
1 m

0 1

]
∈ SL(2,Z)

where m ∈ Z is chosen so that C

[
`

k

]
=

[
−n

m

]
such that −mn ≤ −1. Then apply case (a).

In the case where K is the (2, 3) torus knot, we have a particularly simple situation. In this case
the slope of the dividing curves on Nk with respect to CK is k + 1. We apply a transformation of
Dehn twists so that we can use theorem 17. In the case k > 0 we are in case 1 (above) so we get[

1 −1

0 1

][
1

k + 1

]
=

[
−k

k + 1

]
we get a slope of

− k

k + 1
These slopes have a simple continued fraction of the form

k + 1
pq − p− q − k − 1

= −k + 1
k

= −2− 1
−2− 1

−2−··· 1
−2

where the number of −2’s is equal to k. In the notation of theorem 17 we get (r0, r1, · · · , rk−1) =
(−2,−2, · · · ,−2) so the number of tight contact structures on Nk is

|(r0 + 1)(r1 + 1) · · · (rk−2 + 1)(rk−1)| = |(−1)(−1) · · · (−1)(−2)| = 2

When k = 0 we are in case 3 so we get[
1 −2

0 1

][
1

1

]
=

[
−1

1

]
so the slope is −1 which is the special case of theorem 17 which says there is a unique tight contact
structure on N0.

The idea behind the classification of solid tori, is that S1×D2 can be decomposed into S1×D2 =
N ∪ T 2 × I. N is a standard neighborhood of a core Legendrian curve of S1 × D2 with twisting
number −1. T 2×I is given by (S1×D2)\N so its two boundary components match up with ∂N and
∂(S2×D2). There are exactly two dividing curves on ∂(S1×D2) and they have slope −mn , and two
dividing curves on ∂N of slope −1. Since the tight contact structure on a standard neighborhood is
unique, the number of tight contact structures on S1×D2 is the same as the number of tight contact
structures on T 2× I (note this also relies on a gluing theorem that allows us to glue any T 2× I with
a tight contact structure to a standard neighborhood providing the slopes of the dividing curves on
the boundaries match up). In the case of the (2, 3) torus knot, there are exactly two tight contact
structures on T 2 × I with boundary slopes −1 and − k

k+1 which are distinguished by the sign of the
Poincaré dual of the Euler class.

We now show each of these tight contact structures exists in (S3, ξstd). Let Nk have one of its two
universally tight contact structures, and let R = Nk ∪A× [−ε, ε], where A is an annulus from Nk to
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itself, A× [−ε, ε] is its [−ε, ε] invariant neighborhood, and ∂R has two parallel components, T1 and
T2 each of which is an unknotted torus. Note that A meets A′ transversely, along a curve which is
parallel to ∂A and to ∂A′. Because A′ has no boundary parallel curves, we can find a contact isotopy
of A × [−ε, ε] that contains A′ × [−ε′, ε′]. We know from section 5.2.1, that this means that the
complement of R = Nk∪A×[−ε, ε] is two standard neighborhoods of unknots, and the boundary of R
has dividing curves which match the dividing curves on these standard neighborhoods. The contact
structure on R is obtained by extending the chosen tight contact structure on Nk. The closed curves
which run parallel to the core curve of A′ provide an S1 fibration of R. For all universally tight
contact structures on Nk, the contact planes are transverse to these fibers. If we choose a contact
structure for R such that A has no boundary parallel curves then the contact planes throughout R
will be transverse to the fibers. Such a contact manifold which has S1 fibers everywhere transverse
to the contact planes is called a horizontal contact structure. This is useful because of the following
lemma:

Lemma 15 (Honda [15]). Let ξ be a contact structure that is everywhere transverse to the fibers of
a circle bundle M over a closed oriented surface Σ with g(Σ) ≥ 1. Then ξ is (weakly) symplectically
fillable and universally tight.

Therefore the contact structure on R is tight. Then we can glue a standard neighborhood N1

of U1 ∈ U1, tb(U1) = −n1 to R to get a solid torus with a tight contact structure, because of the
correspondence between the classification of tight contact structures on solid tori with the those on
T 2 × I. Then R∪N1 is a neighborhood of the unknot. Note that S3 decomposes into two standard
neighborhoods of unknots with tb = −1. By thinning one of these neighborhoods and looking at the
complement in S3 we find that any standard neighborhood of an unknot thickens to a solid torus
such that the slope of the dividing curves on the boundary is −n2 for any n2 ∈ Z+. Therefore we
can thicken R∪N1 in S3 to such a solid torus which will glue to a standard neighborhood of U2 ∈ U2

where tb(U2) = −n2 to give the standard contact structure on S3.

5.2.3. The complement of Nk. The S1 bundle on R described above, extends to a Seifert fibration of
S3 in the following way. S3 can be decomposed into two solid tori, each of which can be foliated by
tori together with the core curve at the center of each solid torus. On one of these tori we have K, a
(p, q) torus knot. By taking curves parallel to K, we can foliate this torus by (p, q) torus knots. We
can repeat this foliation continuously in each of the other tori in the foliation of S3 \ {core curves}.
The fibers in the Seifert fibration are these closed curves together with the two core curves. Since
K is one of these fibers, S3 \Nk ∼= S3 \K is a Seifert fibered space. The base space of this fibration
is a punctured S2 with two orbifold points, of degrees p and q. One can see this by thinking of
S3 \ {core curves} as T 2 × (0, 1). In each T 2 × {t}, there is an S1 worth of fibers, this gives us an
open cylinder worth of fibers. The puncture corresponds to K. The two core curves are the two
remaining fibers. These are the two orbifold points which attach to the two boundary components
of the open cylinder in the base space. The degree of these orbifold points, comes from the degree of
the covering of the core curve by the generic Seifert fibers as they collapse towards the core curve.
See figure 37.
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Figure 37. The two solid tori which decompose S3, fibered by (2, 3) torus knots,
which collapse towards the core curve creating orbifold points in the base space of
degrees 2 and 3. (Identify ends of the cylinders to get tori.)

We use some basic results about 2-dimensional orbifolds to get a manifold which is a pq cover of
the punctured sphere with orbifold points of order p and q. For a detailed introduction to orbifolds
and Seifert fibered spaces, see [26]. In fact we will find a cover for S2 with three orbifold points of
degrees p, q, pq. The orbifold-Euler characteristic of this orbifold is

χ(S2)−
(

1− 1
p

)
−
(

1− 1
q

)
−
(

1− 1
pq

)
=
−pq + q + p+ 1

pq

There is a manifold which is a pq-fold cover of this orbifold which necessarily has Euler characteristic
−pq+ q+ p+ 1. We will show this explicitly in the case of (p, q) = (2, 3). In this case the cover has
Euler characteristic 0 and is thus a torus. In general the cover will be a genus g = (2+pq−q−p−1)/2
surface, which will be greater than 1 in cases other than (p, q) = (2, 3).

Let X be S2 with three orbifold points of degrees 2, 3, 6. We obtain the covering map f ′ : T 2 → X

as the composition of two maps. The first is g : T 2 → X ′ where X ′ is the sphere with four orbifold
points, each of degree 2. g is the quotient map which quotients by the relation x ∼ Ax where

A =

[
−1 0

0 −1

]
(here we identify T 2 with R2/Z2). Ax = x if and only if (−a,−b) ∼= (a, b) (mod

1) if and only if 2a = 2b = 0 which happens if and only if a and b are 0 or 1
2 . Therefore A : T 2 → T 2

has four fixed points, and every other point has order 2. Therefore q is a two-fold covering map,
where the four fixed points of A map onto the orbifold points of order 2. We see that the image of
q is a sphere with 4 orbifold points in figure 38.

Then we take another map h : X ′ → X, which takes X ′ (S2 with 4 orbifold points of order 2).
Start with X ′ so that one of the orbifold points is at the north pole, and the other three are evenly
spaced around the equator. Let B : S2 → S2 rotate the sphere by 2π/3 around the north-south
axis. h is the quotient map by the relation x ∼ Bx. Note that r has 2 fixed points, the north and
south pole. Therefore h is a 3-fold covering map where these fixed points become orbifold points.
Since the north pole was already an orbifold point of degree 2 it becomes an orbifold point of degree
6. The south pole becomes an orbifold point of degree 3. The other 3 orbifold points of X ′ are
identified into one orbifold point of degree 2. See figure 39.
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Figure 38. Quotienting T 2 = R2/Z2 by A = −I. In the first picture the identifi-
cations are indicated by identical symbols and colors. The fixed points are marked
by dots. In the second picture, some of the identifications have been made. The
points which have been covered by two points of T 2 are so indicated by double lines
and symbols. The final picture completes the identifications by gluing the edges of
the rectangle of the second picture. This results in a pillow shape where the four
points which have only been covered once are at the corners and every other point
has been covered exactly twice. This is the 2-sphere with 4 orbifold points of order
2.

2 2

2

2

2

3

6

Figure 39. Quotienting S2 with four orbifold points of degree 2, to S2 with three
orbifold points of degrees 2, 3, 6.
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Therefore f ′ = h ◦ g is a 6-fold covering map from T 2 to X. The orbifold point of degree 6 in
X which has a single point in its preimage under f , therefore we may remove this point and its
preimage to get a 6-fold covering map f : T 2 \ {∗} → Y where Y is the punctured sphere with two
orbifold points of degrees 2 and 3. Recall that S3 \Nk is a Seifert fibered space over Y . Therefore
f induces a 6-fold covering map F : (T 2 \ {∗})× S1 → S3 \Nk sending S1 fibers of (T 2 \ {∗})× S1

injectively onto S1 fibers.
Now we want to find a contact structure on (T 2 \ {∗})× S1 which is the pullback of the contact

structure on S3 \ Nk (the restriction of the standard contact structure on S3). The tight contact
structures on T 3 were completely classified by Kanda in [16]. The restriction of the tight contact
structures on T 3 give tight contact structures on (T 2 \ {∗})× S1. Kanda’s classification states:

Theorem 18 (Kanda [16]). Every tight contact structure on T 3 is contactomorphic to

ξn = ker(cos(2πnt)dx+ sin(2πnt)dy)

for some n ∈ Z+ where (x, y) are coordinates on T 2 = R2/Z2 and t is a coordinate on S1 so (t, x, y)
are coordinates on S1 × T 2 = T 3.

Furthermore, the maximal twisting with respect to the fibration of any S1 which is smoothly
isotopic to a fiber in (T 3, ξn), is −n, and so (T 3, ξn) is contactomorphic to (T 3, ξm) if and only if
n = m.

Notice that the S1 fibers in the t direction in (T 3, ξn) have twisting −n with respect to the
fibration over T 2.

We know that the twisting of the fibers on the boundary of S3 \Nk is −(6k + 5) with respect to
∂Nk, or equivalently with respect to the Seifert fibration. I claim that the pullback of (S3 \Nk, ξstd)
under F is ((T 2 \ {∗})× S1, ξ6k+5) (where ξn and ξstd are understood to be restrictions of the tight
contact structures on T 3 and S3 respectively). Suppose ξ′ is the contact structure on (T 2 \{∗})×S1

which is the image under F of (S3 \ Nk, ξstd). We know that the fibers in A × [−ε, ε] ⊂ S3 \ Nk
have twisting −(6k + 5) with respect to the Seifert fibration, therefore ξ′ agrees with ξ6k+5 on the
preimage of A × [−ε, ε]. Note that ξ′ also agrees (up to isotopy) with ξ6k+5 on the preimage of
a neighborhood of ∂Nk for the same reason, since the fibers in ∂Nk have twisting −(6k + 5) and
contact structures are determined in a neighborhood of a surface by the characteristic foliation of
the surface. Putting together these preimages we see that we have removed a neighborhood of the
puncture ×S1. Then we simply need to know that ξ′ agrees with ξ6k+5 on the remainder. Here we
utilize Kanda’s classification results 18. This implies that we have a 6-fold covering map of contact
manifolds:

F : ((T 2 \ {∗})× S1, ξ6k+5)→ (S3 \Nk, ξstd)
This covering map will be important in showing that we cannot thicken Nk, because the contact

structures on (T 2 \ {∗})×S1 are well-understood. When (p, q) are not (2, 3), the situation becomes
more complicated because the corresponding covering map would be from (Σg \ {∗})×S1 where Σg
is the orientable genus g surface. The classification of tight contact structures on such manifolds
is more complicated. We will complete the argument below in the case of (p, q) = (2, 3), and note
what would be required to generalize.
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5.2.4. Proving Nk does not thicken. First note that it suffices to show that Nk does not thicken to
Nk′ for k′ < k. Because the slope of the dividing curves on Nk is − k+1

6k+5 , all thickenings will be
to slopes which are strictly more negative. This means that if Nk thickens to Nk′ , then k′ < k

(otherwise we would simply be thinning). If Nk thickens to some other solid torus which does not
have a slope of the form − k′+1

6k′+5 then that torus will further thicken to a solid torus which does have
the form of an Nk′ .

Now suppose Nk thickens to Nk′ , k′ < k. Then a ruling curve γ of slope ∞ (with respect to
C(p,q)
U1

, on Nk′ has twisting number −(6k′ + 5) > −(6k + 5). Note that since Nk′ is assumed to be
a thickening of Nk, γ is in S3 \Nk. Recall the 6-fold covering map F : (T 2 \ {∗})× S1 → S3 \Nk.
Since γ is a fiber in S3 \ Nk, F−1(γ) = {x} × S1 ∈ (T 2 \ {∗}) × S1. Because F preserves the
twisting of the fibers, this implies that F−1(γ) is a fiber in ((T 2 \ {∗}) × S1, ξ6k+5) of twisting
−(6k′+ 5) > −(6k+ 5). However Kanda’s theorem (18) implies that the maximal twisting of an S1

in (T 3, ξ6k+5) is −(6k + 5), so this is a contradiction. This completes the proof that Nk does not
thicken.

5.3. Transverse knots not distinguished by classical invariants. We have an example of a
knot which we know does not satisfy the UTP. Furthermore we have classified the neighborhoods of
this knot which do not thicken. Now we want to use these neighborhoods to find Legendrian knots
which share the same classical invariants, but there is no number of positive stabilizations one can
apply to make these knots Legendrian isotopic. Then we will have a knot type which is not stably
simple and is thus not transversely simple.

5.3.1. Identifying potential cables. The fact that we have neighborhoods of K, the (2, 3) torus knot,
which do not thicken, tells us that we should be able to find a knot that lies on the boundary of
such neighborhoods which does not destabilize. This correspondence comes from the fact that both
thickening of solid tori and destabilization of knots result from finding a bypass along the boundary
of the solid torus. To ensure that the cable we choose will not destabilize, we need to choose a cable
which intersects the dividing curves on ∂Nk fewer times than it intersects the boundary curves on
any parallel torus inside Nk. The range of slopes of dividing curves on parallel tori inside Nk is
[− k+1

6k+5 , 0). If the slope of our curve is −ab then we want∣∣∣∣∣det

[
−k + 1 −a

6k + 1 b

]∣∣∣∣∣ >
∣∣∣∣∣det

[
−c −a

d b

]∣∣∣∣∣
whenever c and d are relatively prime and − k+1

6k+5 < − c
d < 0. There is a trick we can use that

makes use of the Farey tesselation to determine slopes that satisfy this condition. The idea is
that a shorter sequence of jumps along the Farey tesselation corresponds to a smaller number of
intersections between a curve of the slope at the starting point of the sequence of jumps and a curve
of the slope at the ending point. Therefore if we choose a slope −ab such that every sequence of
jumps to a slope − c

d where − k+1
6k+5 < −

c
d < 0 necessarily includes a jump to − k+1

6k+5 , we will satisfy

the necessary condition. This happens if we choose − (k−1)+1
6(k−1)+5 < −

a
b < −

k+1
6k+5 (see figure 40).
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-1/5
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-2/11

-3/16

-3/17

-4/21

-5/27

-5/28

-4/23

Figure 40. A segment of the Farey tesselation. Slopes corresponding to − k+1
6k+5

0 ≤ k ≤ ∞ are in red. Arcs between any two adjacent red slopes separate all the
slopes in between from slopes which are larger.

Such slopes have the form

(12) − ((k − 1) + 1)m+ (k + 1)n
(6(k − 1) + 5)m+ (6k + 5)n

= − (m+ n)k + n

6(m+ n)k + 5n−m

For m ≥ 0, n, k > 0, m,n ∈ Z. Recall that we are using the coordinates C(p,q)
U1

. Changing to
longitudinal coordinates CK:[

1 6

0 1

][
−6(m+ n)− 5n+m

(m+ n)k + n

]
=

[
n+m

(m+ n)k + n

]
So we get an ((m + n)k + n,m + n) cable of the (2, 3) torus knot lying on the surface of Nk.
By the Legendrian Realization Principle 9 we may assume that this cable is a Legendrian knot.
Furthermore, these knots do not destabilize. The proof of this relies on an understanding of generally
useful techniques [13] called state traversal and isotopy discretization.

5.3.2. State traversal and Isotopy Discretization. The idea of state traversal is that you can cut up
a 3-manifold along convex surfaces and look at all the pieces to get information about the possible
tight contact structures on each piece, which will glue together to give a tight contact structure on
the entire 3-manifold.

More specifically, suppose M is a compact oriented 3-manifold whose boundary (if nonempty)
has a dividing set which can extend to a tight contact structure on all of M . Cut M along an
incompressible surface N where ∂N ∩ Γ∂M 6= ∅ whenever ∂M 6= ∅ to get a sutured manifold
decomposition, M ′ whose boundary consists of two copies of N together with ∂M . Now we can look
at different possibilities for the dividing set on N . Suppose ΓiN extends to a contact structure ξi on
M ′. We say there is an allowable state transition from (Γ1

N , ξ
1) to (Γ2

N , ξ
2) if:

(1) ξ1 is tight on M ′

(2) (Γ2
N , ξ

2) is obtained from (Γ1
N , ξ

1) by a nontrivial bypass along N .
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(3) ξ2 is obtained from ξ1 by peeling off the N × I layer corresponding to the bypass and
reattaching this layer to the other copy of N in M ′.

Let G be a graph with vertices all possible (ΓN , ξ), where there is an edge between vertices exactly
when there is a state transition from one vertex to the other. Using this notation, we have the
following gluing theorem:

Theorem 19 (Honda [13]). Suppose M ′ is endowed with the contact structure given by (ΓN , ξ). We
obtain a tight contact structure on M by identifying the two copies of N in M ′ if and only if every
other vertex (Γ′N , ξ

′) which is path connected to (ΓN , ξ) in G induces a tight contact structure on
M ′.

In order to classify distinct contact structures, Honda uses isotopy discretization. Here we will
use it to determine the possible convex surfaces with a fixed Legendrian boundary. The relevant
theorem is the following:

Theorem 20 (Honda [13]). If ξ is a tight contact structure on M and N and N ′ are two (topo-
logically) isotopic convex surfaces with the same Legendrian boundary, then there is a sequence of
allowable state transitions from (ΓN , ξM\N ) to (ΓN ′ , ξM\N ′).

We are trying to show that the Legendrian curve of slope (n+m)k+n
n+m (in coordinates CK on the

surface of Nk does not destabilize, which will give us candidates for transversely nonsimple knots.
Let Ln,m,k be this knot. If Ln,m,k destabilizes then there is a bypass along Ln,m,k for ∂Nk. In
other words, there is a torus T , parallel to ∂Nk which contains Ln,m,k and the bypass disk that
gives the destabilization. Then T \ Ln,m,k is an annulus isotopic to ∂Nk \ Ln,m,k with the same
Legendrian boundary, so we can use isotopy discretization to say that Ln,m,k only destabilizes if
there is a nontrivial bypass along ∂Nk. We know there is no nontrivial bypass on the outside of Nk
because Nk does not thicken. If there were a nontrivial bypass inside Nk then we would obtain a
torus parallel to ∂Nk with slope s ≥ − k+1

6k+5 (in coordinates C(p,q)
U1

) where s could be found one jump
away from the slope of Ln,m,k on the Farey tesselation. However we choose the slope so that the
only slope on the Farey tesselation with these properties is the slope of the dividing curves on ∂Nk

itself. Therefore the only bypasses on the inside of Nk are trivial. This shows that Ln,m,k does not
destabilize.

5.3.3. Thurston Bennequin and Rotation Numbers. I claim that tb(Ln,m,k) is strictly less than the
maximal tb for ((m + n)k + n,m + n) cables of the (2, 3) torus knot. We can compute tb(Ln,m,k)
using theorem 15 since (in coordinates C(p,q)

U1
) it is a curve of slope − (m+n)k+n

6(m+n)k+5n−m on a convex
torus with dividing curves of slope − k+1

6k+5 :

tb(Ln,m,k) = lk(Ln,m,k, L′n,m,k)− 1
2
|Ln,m,k ∩ Γ∂Nk

|

= lk(Ln,m,k, L′n,m,k)− |(6(m+ n)k + 5n−m)(k + 1)− ((m+ n)k + n)(6k + 5)|

= lk(Ln,m,k, L′n,m,k)−m

where L′n,m,k is obtained from Ln,m,k by pushing off slightly in the direction normal to Nk. The
linking number of a (p, q) cable lying on a torus with its pushoff in the direction normal to the torus
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is pq, so in this case lk(Ln,m,k, L′n,m,k) = (n + m)((n + m)k + n). Let Ln,m,k be the knot type of
the (n + m, (n + m)k + n) cable of K. Then the Legendrian knot of type Ln,m,k with maximal tb
must lie on a torus representing K whose dividing curves are parallel to the knot so that they do
not intersect. This is possible because, in coordinates C(p,q)

U1
, the thickest solid torus representing K

has dividing curves of slope − 1
5 . By lemma 9 there is a solid torus representing K with dividing

curves on the boundary of any slope s where − 1
5 < s < 0. In these coordinates, Ln,m,k has slope

− (m+n)k+n
6(m+n)k+5n−m (equation 12), where m ≥ 0 and n, k > 0. These are all of the slopes on the Farey

tessellation between − (k−1)+1
6(k−1)+5 and − k+1

6k+5 . When k = 1, − (k−1)+1
6(k−1)+5 = − 1

5 . The sequence − k+1
6k+5

is monotonically increasing so every cable we are considering can be realized as the Legendrian
divides on a torus representing K. Suppose that N is the torus with dividing curves parallel to this
L ∈ Ln,m,k. Then

tb(Ln,m,k) = lk(L,L′)− 1
2
|L ∩ Γ∂N |

= lk(L,L′)

= (n+m)((n+m)k + n)

This tells us that for m > 0, Ln,m,k is a knot which does not destabilize but does not have
maximal tb. To determine that the knot is not stably simple, we first need to compute the rotation
numbers of the knots with maximal tb and the knots like Ln,m,k with less than maximal tb, which
do not destabilize. As we did when we were looking at cables of knots that do satisfy the UTP, we
want to use lemma 13.

First we compute the rotation number for a knot of maximal tb which is the Legendrian divide
on a solid torus Nmax representing K whose boundary has dividing curves of slope (n+m)k+n

n+m in

coordinates CK (− (m+n)k+n
6(m+n)k+5n−m in coordinates C(p,q)

U1
). We want to compute the rotation number

of a Legendrian meridian of Nmax and a Legendrian longitude of Nmax to use lemma ??. By our
results above, we know that we can thicken Nmax of K to Nk−1, a solid torus whose boundary
has dividing curves of slope k in coordinates CK (− k

6(k−1)+5 in coordinates C(p,q)
U1

). Let D be a
meridional disk of Nmax with Legendrian boundary and Σ a Seifert surface for K whose boundary
is a Legendrian longitudinal curve on Nmax. Correspondingly let D′ be a meridional disk of Nk−1

with Legendrian boundary on ∂Nk−1 which contains D, and let Σ′ be a Seifert surface for K with
Legendrian boundary on Nk−1 which is contained in Σ. Let R = Nk−1 \Nmax. Then

r(∂D′) = r(∂D) + 〈e(ξ,R), D′ \D〉

r(∂Σ) = r(∂Σ′) + 〈e(ξ,R),Σ \ Σ′〉

R is contactomorphic to T 2 × [0, 1] where slope(ΓT0) = slope(ΓNmax) = (n+m)k+n
n+m and slope(ΓT1) =

slope(ΓNk−1) = k with respect to CK. Therefore, by the classification of tight contact structures on
T 2 × [0, 1],

PD(e(ξ,R)) = ±((1, k)− (n+m, (n+m)k + n)) = ±(1− n−m, k − (n+m)k − n)

Furthermore r(∂D′) = ±(k − 1). This is because Nk−1 has dividing curves of slope k can be
decomposed into layers divided by tori of decreasing integer slopes. The meridional disk of the layer
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with slope 1 has rotational number 1, and then the Euler class can be used to compute the difference.
The sign depends on which of the two contact structures we take for Nk−1 and necessarily agrees
with the sign of PD(e(ξ,R)).

We also have r(∂Σ′) = 0. This is because the longitude on Nk−1 intersects each of the two
dividing curve exactly once, which implies that there is a single dividing curve on Σ′, and exactly
two singularities on ∂Σ′ of opposite signs. We may perturb Σ′ so that it contains no other singularities
and then it is not difficult to find a section of ξ|Σ′ that agrees with T (∂Σ′) on the boundary which
has no zeroes.

Therefore if Lmaxn,m,k is a Legendrian knot which is a (n+m, (n+m)k+ n) cable of K of maximal
tb, then

r(Lmaxn,m,k) = (n+m)(r(∂D)) + ((n+m)k + n)(r(∂Σ))

= (n+m)(r(∂D′)− 〈e(ξ,R), D′ \D〉) + ((n+m)k + n)(r(∂Σ′) + 〈e(ξ,R),Σ \ Σ′〉)

= (n+m)(±(k − 1)− (±(k − (n+m)k − n))) + ((n+m)k + n)(0± (1− n−m))

= ±((n+m)k −m)

Similarly we can compute the rotation number for Ln,m,k which lies onNk. LetD′′ be a meridional
disk for Nk and Σ′′ be a Seifert surface for K with boundary being a longitudinal curve on ∂Nk. We
know r(∂D′′) = ±k, and r(∂Σ′′) = 0. Then lemma 13 gives us

r(Lm,n,k) = (n+m)(r(∂D′′)) + ((n+m)k + n)(r(∂Σ′′))

= ±(n+m)k

Notice that if we take the knot Lmaxn,m,k where r(Lmaxn,m,k) = ((n + m)k −m), it has tb(Lmaxn,m,k) =
tb(Ln,m,k) so the values of (r, tb) for Sm+ (Lmaxn,m,k) are ((n + m)k, tb(Ln,m,k) −m) which are exactly
the values of (r, tb) for Lm,n,k when we take the Lm,n,k with rotation number (n + m)k. However
we know that Lm,n,k does not destabilize and Sm+ (Lmaxn,m,k) clearly does destabilize. This shows that
Ln,m,k is not Legendrian simple. We would like to prove further that Ln,m,k is not stably simple (and
is thus not transversely simple). Thus our next goal is to show that Sj−(Ln,m,k) is not Legendrian
isotopic to Sj−(Sm+ (Lmaxn,m,k)) for any positive integer j.

To simplify notation, let L = Lm,n,k, Lj = Sj−(L), K = Sm+ (Lmaxn,m,k), and Kj = Sj−(K). We
want to show that Lj is not Legendrian isotopic to Kj for any j ∈ Z+. We know that L lies on the
boundary of a solid torus Nk whose dividing curves have slope − k+1

6k+5 in coordinates C(p,q)
K which are

the coordinates we will use for the rest of this proof. Lj is related to L by a sequence of j negative
stabilizations. Therefore through a sequence of j destabilizations (equivalently bypass disks), we
can get from Lj to L. Therefore we can place Lj on ∂Nk such that the annulus A0 = ∂Nk \ Lj has
j boundary parallel dividing curves on each side as in figure 41.

Lemma 16. Every torus isotopic to Σ0 = ∂Nk containing Lj has slope − k+1
6k+5 .

This will indicate that Lj is never Legendrian isotopic to Kj because a torus of slope − k+1
6k+5

cannot thicken to the torus on which Lmaxm,n,k is a Legendrian divide, but any torus containing Kj

can thicken to the torus containing Lmaxm,n,k.



62

+ +

+

+

-

-

-

-

+

Figure 41. The annulus A0 = ∂Nk \Lj with dividing curves. The top and bottom
are identified. ∂A0 consists of two copies of Lj . The + and − signs indicate the
regions in R+ and R− respectively.

Proving that every torus isotopic to Σ0 containing Lj has dividing curves of slope − k+1
6k+5 is

equivalent to proving that every torus isotopic to Σ0 relative to Lj has dividing curves of slope− k+1
6k+5 .

We can do this using the state traversal technique. First look at a [0, 1] invariant neighborhood of
Σ0. This is a T 2× [0, 1] on which we will perform the state traversal technique. We will let T0.5 = Σ0

and cut this T 2 × [0, 1] along T0.5. Then state traversal dictates that the possible states (dividing
sets on T0.5) can be obtained by a sequence of allowable state transitions (see section 5.3.2). We
will describe these allowable state transitions to show is that the slope of the dividing curves on T0.5

in all possible states is − k+1
6k+5 . In order to ensure that we can still glue T 2 × [0, 1] in to S3 after

performing a state transition, we need to find a contactomorphism φ : S3 → S3 which sends the
[0, 1] invariant neighborhood of Σ0 to T 2× [0, 1] with the tight contact structure it inherits after the
state transition, and matches up their complements. Since state transitions are discrete steps, we
are basically proving lemma 16 by induction where the inductive hypothesis is:

(1) T0.5 is a convex torus containing Lj with dividing curves of slope − k+1
6k+5 .

(2) T0.5 lies in a [0, 1] invariant T 2 × [0, 1] where slope(ΓT0) =slope(ΓT1) = − k+1
6k+5 and #ΓT0 =

#ΓT1 = 2.
(3) There is a contactomorphism φ : S3 → S3 sending T 2 × [0, 1] to the [0, 1] invariant neigh-

borhood of Σ0 and matching up the complements.

We will first show that the first condition is preserved by an allowable state transition in the
following two steps.

Allowable state transitions are obtained by attaching a bypass to T0.5. T0.5 bounds a solid torus
N isotopic to Nk which cannot thicken to a solid torus with dividing curves of different slope since
its dividing curves have slope − k+1

6k+5 . Therefore if the slope of the dividing curves of T0.5 changes
it is because of a bypass attached on the interior of N . Therefore all possible slopes obtained by
allowable state transitions are [− k+1

6k+5 , 0). We show that of these, the only one which can actually
be obtained is − k+1

6k+5 in the following two steps.

Claim 1. Lj cannot lie on a convex torus Σ inside Nk that is isotopic to Σ0 with 2 dividing curves
of slope − 1

6 .
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Proof. A convex torus with 2 dividing curves of slope − 1
6 isotopic to Σ0 inside Nk, bounds a standard

neighborhood of the Legendrian (2, 3) torus knot K ∈ K where tb(K) = 0 and r(K) = −1. A curve
of slope − (m+n)k+n

6(m+n)k+5n−m (which corresponds to the cable Lm,n,k pulled tight onto the torus) is
S+(L). This is because we can attach a bypass to a torus with 2 dividing curves of slope − 1

6 along a
curve of slope − (m+n)k+n

6(n+m)k+5n−m yielding a torus of slope − k+1
6k+5 by lemma 5. Therefore if Lj lies on a

convex torus with 2 dividing curves of slope − 1
6 it is a stabilization of S−(L). However stabilizations

of S−(L) can never have the same (r, tb) values as Sj−(L) = Lj , thus proving step 1. �

Claim 2. If there were a convex torus containing Lj with dividing curves of slope s ∈ (− k+1
6k+5 , 0),

then there is a sequence of bypasses disjoint from Lj which after attached give a convex torus con-
taining Lj with 2 dividing curves of slope − 1

6 .

Proof. Suppose after we attach the bypass we obtain a convex torus Σ containing Lj with dividing
curves of slope s ∈ (− k+1

6k+5 ,−
1
6 ). Then Σ bounds a solid torus which contains another torus Σ′

which has 2 dividing curves of slope − 1
6 by the classification of tight contact structures on solid

tori. Now take an annulus A with one boundary curve parallel but disjoint from Lj on Σ and the
other boundary curve of the same slope on Σ′. Then A intersects the dividing curves on Σ′ fewer
times than the dividing curves on Σ so there are boundary parallel curves to A∩Σ which provide a
sequence of bypass disks disjoint from Lj to a torus with 2 dividing curves of slope − 1

6 .
If after we attach the bypass we obtain a convex torus Σ of slope s ∈ (− 1

6 , 0) then the solid torus
bounded by Σ can be thickened (via a sequence of bypasses along Legendrian ruling curves parallel
to Lj to a solid torus whose boundary has dividing curves of slope − 1

6 . �

This shows that every state transition can only change the number of dividing curves, not the
slope. Finally, we show that the second and third conditions in the inductive hypothesis are preserved
by allowable state transitions.

Suppose we start out with a surface Σ bounding a solid torus N and satisfying the inductive
hypothesis, and then we attach a bypass to obtain Σ′, where the dividing curves on both surfaces
have slope − k+1

6k+5 . Then there is a T 2 × [0, 1] containing Σ as T0.5 where T0 and T1 each have
exactly two dividing curves of slope − k+1

6k+5 . Suppose first that the bypass is on the inside of N , so
Σ′ is inside N . Let P = T 2 × [0.5, 1], so ∂P = Σ ∪ T1. There is a thickened torus Q between Σ
and Σ′ inside N . Furthermore Σ′ bounds a solid torus N ′. Honda’s classification of tight contact
structures on solid tori proves that if Σ′ has more than 2 dividing curves then there is a nonrotative
outer layer Q ∼= T 2 × [0, 1] of N ′ such that ∂R = Σ′ ∪ T ′ where T ′ is a torus parallel to Σ′ with two
dividing curves of slope − k+1

6k+5 , and every torus parallel to Σ′ and T ′ inside of Q has slope − k+1
6k+5 .

Then P ∪Q ∪R is a thickened torus with boundary T1 ∪ T ′, both of which have exactly 2 dividing
curves of the correct slope. Furthermore P ∪Q ∪R is non-rotative and thus the contactomorphism
in condition 3 exists.

In the case that the bypass is attached to Σ on the outside of N , we let P = T 2 × [0, 0.5] which
has ∂P = T0 ∪ Σ. Let R be the thickened torus such that ∂R = Σ ∪ Σ′. Now we want to find a
non-rotative thickened torus Q on the other side of Σ′ from R such that ∂Q = Σ′ ∪ T ′ where T ′

has exactly 2 dividing curves of slope − k+1
6k+5 . This is slightly more difficult than in the previous
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case because the complement of N ′ = N ∪ R is not a solid torus. However, we can decompose
S3 \ N ′ into two unknotted solid tori V1, V2, which are standard neighborhoods of core unknotted
Legendrian curves, connected by a thickened annulus that runs parallel to N ′. This is the same
technique used in section 5.2. Essentially we choose the core Legendrian curves of V1 and V2 to have
maximal possible tb such that their standard neighborhoods lie in S3 \N ′. After we choose V1 and
V2 as thick as possible and then attach the thickened annulus A′ ∩ [−ε, ε] in between and rounding
the edges as in figures 34 and 35, the boundary has exactly 2 dividing curves of slope − k+1

6k+5 and
the space between N ′ and V1 ∪ V2 ∪ A′ ∩ [−ε, ε] is a non-rotative solid torus, which will be our Q.
Then P ∪R ∪Q gives the T 2 × [0, 1] containing Σ′ that satisfies conditions 2 and 3.

�
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Figure 42. A grid diagram for the trefoil knot

6. Algebraic Tools in Contact Topology

6.1. Grid Diagrams. Grid diagrams provide a way of presenting a knot diagram in a way that
is accessible to combinatorial manipulations. They have come up in many different contexts, in
studying knots. A grid diagram is simply an n × n grid of squares (n is called the grid number),
where each row and column contains exactly oneX and one O. To obtain a knot from such a diagram,
draw an oriented horizontal segment from each O to the X in the same row and an oriented vertical
segment from each X to the O in the same column. At each intersection, let the horizontal segment
pass under the vertical segment. This produces a knot diagram. See figure 42 for an example.

Grid diagrams are a natural way to study Legendrian knots, because the mirror image of any
Legendrian front projection can be placed on a grid diagram.

Note: While it is a rather annoying convention to always look at the mirror image of the knot
instead of the knot itself, this convention is standard in the literature so we keep it here. We will
always implicitly assume we are looking at the mirror image of the Legendrian front in these sections
using grid diagrams.

Given a Legendrian front projection, Legendrian isotope the segments between consecutive cusps
and/or horizontal tangencies so that they are straight diagonal line segments except for the slight
curve for the cusp or horizontal tangency. Then Legendrian isotope to raise or lower the cusps and
horizontal tangencies so that all the diagonal lines with positive slope are parallel to y = z and
disjoint and all the diagonal lines with negative slope are parallel to y = −z and disjoint. Now
turn the diagram 45◦ counterclockwise. Now each straight segment is either horizontal or vertical.
Create a row for each horizontal segment and a column for each vertical segment, and place the
X’s and O’s on the cusps and (previously horizontal) tangencies) according to the orientation of
the Legendrian knot. (See figure 43). In the other direction, we can turn a grid diagram into a
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Figure 43. Changing a Legendrian front projection to a grid diagram
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Figure 44. Changing a grid diagram into a Legendrian front projection

Legendrian front projection by smoothing out the southwest and northeast corners, turning the
northwest and southeast corners into cusps, and rotating the diagram 45◦ clockwise. (See figure 44).

There are three types of moves (and their inverses) one can perform on a grid diagram to obtain
a topologically equivalent knot. These are cyclic permutation, commutation, and (de)stabilization.

• Cyclic permutation: Permutes the rows (or columns) of the grid cyclically. (Figure 45)
• Commutation: Suppose there are two adjacent rows (or columns) such that the markings

do not alternate between the two rows (or columns), and each marking in the two rows
(columns) is in a different column (row). The commutation move switches two such rows
(columns). (Figure ??)
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Figure 45. Cyclic Permutation of a grid diagram

• Stabilization: Split one row into two adjacent rows, one containing the X and the other
containing the O (without changing the columns the X and O occupy), then add in an
additional column adjacent to the column with the X or the column with the O. In this
column introduce a new X and O to ensure that there is exactly one X and one O in the
two rows resulting from the splitting. To invert stabilization (destabilization) we must find
a 2 × 2 square in the grid which has exactly three markings, delete the column containing
two markings in the 2 × 2 square, and merge together the two rows in the 2 × 2 square.
(Figure 47)

Any two grid diagrams which represent the same topological knot type can be obtained from one
another through these moves. This is proven in Cromwell [4]. To be more specific, we need to further
classify (de)stabilizations. We do this by specifying which of the four squares in the 2× 2 square is
empty and whether there are moreX’s or O’s in the 2×2 square. This results in 8 types of destabiliza-
tions. The empty square can be in one of four compass directions: NW,NE,SW,SE so the 8 types
of (de)stabilization moves are X : NW,X : NE,X : SW,X : SE,O : NW,O : NE,O : SW,O : SE
(figure 48). It turns out that some of these moves are repetitive once we include commutation and
cyclic permutation. We will first reduce the number of moves we need in the following two lemmas.

Lemma 17. A stabilization of type O : SE (respectively O : NE, O : NW , or O : SW ) is equivalent
to a stabilization of type X : NW (respectively X : SW , X : SE, or X : NE) followed by a sequence
of commutation and cyclic permutation moves.

Proof. Perform the X stabilization so that after stabilizing, the X is in row i, and a new column is
introduced adjacent to the X in row i. The new column introduced has an X in row i± 1 and one
O in row i. Therefore the new column will commute with every adjacent row on the other side of
the X in row i until the adjacent column contains an O in row i ± 1. (If commutation pushes the
new column to the end of the grid, use a cyclic permutation to bring it to the other side.) Then we



68

X

X

X

X

X

X

X

O

O

O

O

O

O

O

X

X

X

X

X

X

O

O

O

O

O

O

OX

X

X

X

X

X

X

X

O

O

O

O

O

O

O

X

X

X

X

X

X

X

O

O

O

O

O

O

O

Figure 46. Commutation on a grid diagram
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Figure 47. Stabilizations of a grid diagram
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Figure 48. The different types of stabilization.

will have a new 2× 2 square in rows i and i± 1 which contains two O’s and an X where the missing
square is as in the statement of the lemma. �

Lemma 18. A cyclic permutation can be achieved through a sequence of commutations and (de)stabilizations
of types X : NW , X : SE, O : NW , and O : SE.

Proof. We will discuss the case where we want to move a row from the bottom to the top. Symmetric
moves apply to the other cases. We provide two examples: one moving a row from bottom to top
(figure 49) and the other moving a column from left to right (figure 50). It may be useful to go
through a couple examples to convince oneself this method works. Follow figure 49 for this proof.

Suppose we want to move the bottom row to the top. Without loss of generality, suppose the X
in the bottom row is on the left of the O (otherwise do the same process with X’s and O’s switched).
We will call the X in the bottom row X1, the O in the same column as X1, will be called O1. The
O in the bottom column will be O2 and the X in the same column as O2 will be X2.

Since we want to move X1 to the top above O1, we would like to switch the order from top to
bottom of X1 and O1, but we cannot commute them past each other since they are in the same
column. We instead perform a O : SE stabilization to create a new column containing the symbols
X ′ and O′ in the order we want (O′ is above X ′). O′ will now hold the position of O1, and we will
move O1 to the top to represent the cyclically permuted O2. We chose the stabilization such that
there is nothing above the segment from X ′ to O1. This is possible since X1 is below O1. This
allows us to commute the row containing X̃ and O1 up to the top of the diagram, since X ′ and O1

are directly next to each other. We will leave X ′ at the top here directly above O′ which has taken
the place of O1. Therefore X ′ is in the position that we want the cyclically permuted original X1

to be.
Since X1 is on the bottom row and O1 is in the top row of the same column, we can commute

this column to the right until X1 is directly next to O2. Recall that X ′ is the only other symbol in
the row with O1 and it is on the left of O1 and thus does not get in the way of this commutation.
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Figure 49. Moving a row from bottom to top using only commutation and
(de)stabilizations of types NW and SE. Step 1: O : SE stabilization. Steps
2-4: Commutation. Step 5: X : NW destabilization. The area where the
(de)stabilization/commutation will occur is highlighted in red.

This places O1 in almost the position that we would like the cyclic permutation of O2 to be, but in
a larger grid due to the stabilization.

Now we essentially have the X’s and O’s in the positions we want them on the top row and we
simply need to destabilize to eliminate the extra positions and symbols in the grid. Since X1 and
O2 are directly next to each other in the bottom row, we can commute the bottom row up until O2

is directly next to X2. This allows us to perform a X : NW destabilization which sets the grid back
to its original size and has created a grid diagram which is one cyclic permutation away from the
original.

�

Now we would like to know which of these moves preserves the Legendrian isotopy type of the
knot. It is not difficult to see that commutation corresponds to a combination of planar isotopy and
Legendrian Reidemeister II and III moves (see figure 51 for examples). Analysis of the stabilization
moves shows that X : NW and X : SE preserve the Legendrian knot type, but X : NE and X : SW
do not, and in fact correspond to positive and negative stabilizations of the Legendrian knot. See
figures 52, 53, 54, and 55.
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Figure 50. Moving a column from left to right using only commutation and
(de)stabilizations of types NW and SE. Step 1: O : NW stabilization. Steps
2-4: Commutation. Step 5: X : SE destabilization. The area where the
(de)stabilization/commutation will occur is highlighted in red.

This allows us to only consider commutations and (de)stabilizations of types X : NW , O : NW ,
X : SE and O : SE. Now we need to check which of these moves corresponds to Legendrian isotopy.
It is not difficult to see that

6.2. Combinatorial Knot Floer Homology. Knot Floer homology is an invariant of knots that
is defined in terms of Heegaard Floer homology, an invariant of 3-manifolds. Typically, computing
Heegaard Floer homology involves counting holomorphic disks. Recently, Manolescu, Ozsváth, and
Sarkar developed a combinatorial description of knot Floer homology for knots in S3 in [19]. In [20]
it was shown that knot Floer homology is an invariant of topological knot types in S3 through the
purely combinatorial description. The data used to compute combinatorial knot Floer homology
comes from a grid diagram. Because of the correspondence between grid diagrams and Legendrian
and transverse knots in (S3, ξstd), this combinatorial description provided an indication of a link
between knot Floer homology and Legendrian and transverse knots.

Although the isomorphism type of the knot Floer homology is an invariant of topological knot
type, we get more refined invariants by tracking particular elements from the chain complex, and look
at their image in the homology. In this manner, Ozsváth, Szabó, and Thurston, defined invariants
of Legendrian and transverse knots. They pick out a particular element of the chain complex for a
given grid diagram, and look at its image in the knot Floer homology. To prove that this is actually
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Figure 51. Commutation of grid diagrams corresponds to Legendrian Reidemeis-
ter II and III moves and planar isotopy
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Figure 52. Results of an X : NW stabilization on Legendrian fronts

an invariant of Legendrian knots (or their transverse pushoffs), they simply need to check that they
are invariant under commutation, cyclic permutation, and X : NW and X : SE (de)stabilizations
(and X : SW (de)stabilization in the case of the transverse invariant).

We will describe these invariants, after going through a description of the combinatorial construc-
tion of knot Floer homology.

We begin with a grid diagram G, with grid number n. We denote the set of O’s by O = {Oi}ni=1

and the set of X’s by X = {Xi}ni=1. The generators of the chain complex are sets of n dots on the



73

X O

O
X O
O

XO XO

O
O

O

X O

O O

O
XO

O O

O

X
XO

X
XO

X
XO

Figure 53. Results of an X : SE stabilization on Legendrian fronts
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Figure 54. Results of an X : NE stabilization on Legendrian fronts. With orien-
tations specified by X’s and O’s this is a positive stabilization.
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Figure 55. Results of an X : SW stabilization on Legendrian fronts. With orien-
tations this is a negative stabilization.
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corners where horizontal grid lines meet vertical grid lines, such that there is exactly one dot on
each horizontal and vertical line. Let this generating set be called S(G). Let R = F2[U1, · · · , Un],
where the F2 = Z/2Z and the Ui are transcendental variables. The chain complex C−(G) is the free
module generated by S(G) over R.

Knot Floer homology is a bigraded homology theory. The two gradings are called the Maslov
and Alexander gradings. To compute these gradings, we must define a way of counting generators,
X’s, and O’s and their certain relations to each other. Suppose A and B are sets of points in R2.
Then I(A,B) is the number of pairs ((a1, a2), (b1, b2)) ∈ A×B such that a1 < b1 and a2 < b2. Let
J (A,B) = 1

2 (I(A,B) + I(B,A). (Note that J is symmetric but I is not.
Now place the grid diagram in R2 in the natural way with the lower left corner at the origin and

grid lines on successive integers. We compute the Maslov grading of a generator x ∈ S by

M(x) = J (x,x)− 2J (x,O) + J (O,O) + 1 = J (x−O,x−O) + 1

where we view x and O as sets of points in the grid diagram. The last equality is simply a formal
shorthand for writing out the expanded form as if J were bilinear over formal sums and differences.
Similarly the Alexander grading of a generator is defined by

A(x) = J (x− 1
2

(X + O),X−O)− n− 1
2

where n is the number of components in the link. We extend these gradings to all of C−(G) by
saying multiplication by Ui reduces the Maslov grading by 2 and the Alexander grading by 1.

Now we define the differential on C−(G). View G as lying on the oriented torus R2/(Z/nZ)2.
Suppose x,y ∈ S. If all but two of the points of x agree with the points of y, then there are two
rectangles in R2/(Z/nZ)2 whose lower left and upper right corners are points of x and whose lower
right and upper left corners are points of y (note that upper/lower and left/right are determined by
the orientation on R2/(Z/nZ)2). We say such rectangles connect x to y, and denote the collection
of such rectangles by Rect(x,y). Note that here we are viewing the grid as being on a torus with
opposite edges identified so a rectangle may push through one edge to continue on the opposite
side. We say that r ∈ Rect(x,y) is empty if the interior of r does not contain any points of x (or
equivalently of y) and denote the set of empty rectangles from x to y by Rect◦(x,y). Then

∂−(x) =
∑
y∈S

∑
r∈Rect◦(x,y)

U
O1(r)
1 · · ·UOn(r)

n · y

where Oi(r) is 0 if Oi is not in r and 1 if Oi is in r.
We now check that ∂− is actually a differential:

Lemma 19.

∂− ◦ ∂−(x) = 0

for all generators x of C−(G), and thus ∂− ◦ ∂− = 0.

Proof. The key to the argument is understanding ∂−◦∂−(x) as a way of counting pairs of rectangles:
one in Rect◦(x,y) and the other in Rect◦(y, z) over all possible generators y and z. Since we are
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Figure 56. Distinct generators are represented by different colored dots. It is
assumed that all pictured generators agree outside of the specified corners. Case 4
represents a degenerate rectangle which is actually an annulus.

Figure 57. The two pairs of rectangles coming from case 3.

working with coefficients in F2, we simply need to ensure that such pairs of rectangles come in
cancelling pairs. There are four ways that such rectangles can appear, which are shown in figure 56.

In cases 1 and 2 in figure 56, one can count the rectangles in either order. There is a pair of
rectangles from red to yellow and then yellow to green, and there is another pair from red to green
and then green to yellow (in these cases the rectangle from green to yellow wraps around the other
direction).

The two pairs of rectangles coming from case 3 are pictured in figure 57.
In case 4 the rectangle is actually an annulus from a generator to itself. There are an even number

of such annuli (of width 1 in the grid so as to not contain any other points of the generator) since
there is one for each column and each row. The number of columns equals the number of rows so
these cancel out as well. �
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Figure 58. Grid diagram for the trefoil knot with a generator x indicated by the
collection of blue dots.

The differential reduces the Maslov grading by 1. Each term in the image of the ∂− reduces the
Alexander grading, though not necessarily by the same amount. Thus, the Alexander grading is
actually only a filtration, not a grading on (C−, ∂−).

The reason for the naming of the Alexander filtration comes from the relation of knot Floer
homology to the Alexander polynomial. When we take the homology of the complex (C−, ∂−) and
then look at the Euler characteristic of that bigraded homology (i.e. the alternating sum over the
Maslov grading) we obtain the coefficients of the Alexander polynomial.

The proof that M and A are independent of grid moves is in [20]. We will omit the proofs
here because they are basic counting arguments, and are not necessary to define the invariants of
Legendrian and transverse knots.

The Alexander filtration counts the winding number of the knot around the points of a generator.
This comes from the term

J (x− 1
2

(X + O),X−O)

This comes from an analysis of examining which segments of the knot contribute to the winding
number. The term J (x,X−O) counts the number of horizontal segments above the points of x which
go partly counterclockwise around the points of x (and negatively counts those that go clockwise).
The term 1

2J (X + O,X−O) = 1
2J (X,X)− 1

2J (O,O) accounts for which of these strands continue
sufficiently far down and around to wind around the points of x and adds on a constant in terms of
the positions of the X’s and O’s.

It may be useful to go through a brief example to compute the Maslov and Alexander gradings
of a generator of C−(K) where K is the trefoil in figure 58 and x is the collection of dots on the
integral lattice points on the grid.

We recall that M(x) = J (x−O,x−O)+1. To compute J (x,x) we count the number of pairs of
points where one has both coordinates greater than the other. There are 4 points strictly “greater”
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than (0, 0), 0 greater than (1, 4), 2 greater than (2, 1), 1 greater than (3, 2), and 0 greater than (4, 1).
Therefore J (x,x) = 4 + 0 + 2 + 1 + 0 = 7. To compute 2J (x,O) we need to count the number of
O’s greater than each point in x and the number of point in x greater than each O. Counting the
number of O’s greater than each point of x from left to right, and then the number of points of x
greater than each O from left to right we get:

2J (x,O) = (5 + 1 + 2 + 1 + 0) + (3 + 1 + 0 + 0 + 0) = 13

Similarly to J(x,x), we compute J(O,O) = 3 + 2 + 1 + 0 + 0 = 6. Therefore

M(x) = 7− 13 + 6 + 1 = 1

The Alexander grading can be computed similarly.
We can look at the associated graded chain complex to (C−, ∂−) where the differential decreases

the Alexander grading uniformly by 1. We will call the associated graded complex (CK−, ∂).
CK− = C− but in computing the differential, we only sum over rectangles r ∈ Rect◦(x,y) which
do not contain any X’s:

∂(x) =
∑
y∈S

∑
r∈Rect◦(x,y)

r∩X=∅

U
O1(r)
1 · · ·UOn(r)

n · y

One can verify that if there are any X’s in a rectangle, the term coming from that rectangle will
have Alexander grading reduced by more than 1.

There is one other variation of knot Floer homology that we will use besides the homology of
(C−(G), ∂−). The chain complex is simply

C̃K(G), ∂̃) = (CK−(G)/(U1 = · · · = Un = 0), ∂)

This version makes computations more reasonable, and frequently carries enough information to
be useful in distinguishing knots. Note that we can compute the differential ∂̃ by only counting
rectangles with no X’s or O’s.

One can show, using only this combinatorial description, that the homology of any of these chain
complexes is independent of the grid diagram (i.e. is invariant under grid moves). These arguments
can be found in [20]. They use similar techniques as in the proof that ∂− is a differential. We
will also use similar techniques in the upcoming section to define an invariant of Legendrian and
transverse knots.
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7. Legendrian and transverse invariants from knot Floer homology

7.1. The Legendrian and transverse invariants. We construct two invariants of Legendrian
knots by choosing a particular element of CK−(G) (recall this is the associated graded object whose
differential does not count rectangles containing X’s) and looking at their images in the homology
HFK−(G). We will show that the value of these elements in the homology is invariant under
commutation, cyclic permutation, and (de)stabilizations of type X : NW and X : SE. The image
in the homology of one of these elements will also be invariant under X : SW which corresponds to
negative stabilization, so this will be a stable invariant and can thus be used to generate a transverse
invariant of the transverse pushoffs.

Let z+ ∈ S(G) be the generator which has one dot in the upper right corner of each square
containing an X, and let z− be the generator with one dot in the lower left corner of each square
containing an X. These are in S(G) because of the way the X’s are required to be placed in the
grid (one in each row and column). First we need to check that z+ and z− are cycles, in the graded
complex (CK−, ∂), i.e.

∂(z+) = ∂(z+) = 0

so that they are not always trivial in the homology. Because every rectangle from z± to some other
generator y has a point from z± in the lower left corner and the upper right corner, there will always
be an X in a rectangle from z± to any y. Therefore ∂(z±) = 0. Let λ± be the image of z± in the
homology.

Now we need to check that λ± are invariant under the grid moves corresponding to Legendrian
isotopy. We will show that λ+ is also invariant under the grid moves corresponding to negative
stabilization and thus λ+ is an invariant of the transverse pushoff. Any transverse knot can be
approximated by a Legendrian knot, such that the transverse pushoff of the Legendrian knot is
transversely isotopic to the knot we started with. Therefore to get the invariant of a transverse
knot, find one such Legendrian approximation and then compute λ+. This is well defined because
λ+ is invariant under negative stabilization.

To prove the homologyHFK−(G) is invariant under grid moves, the authors of [?, MOST]onstructed
chain maps which are quasi-isomorphisms (induce isomorphisms on homology) between the chain
complexes CK−(G) and CK−(G′) where G′ is the grid obtained by G by performing a grid move.
Therefore, to show that λ± are Legendrian/transverse invariants, we simply need to show that z±

are preserved under these chain maps. Since we reduced the grid moves to commutation and certain
(de)stabilizations, we need only check preservation under these chain maps.

7.1.1. Commutation. To understand the chain map for commutation, we need to first depict both
the commuted and uncommuted diagram on a single diagram as in figure 59

On this combined diagram, we see the grid line β coming from G and the grid line γ coming
from the commuted diagram G′. They intersect at two points a and b. We say there is a pentagon,
p ∈ Pentβγ(x,y), if x agrees with y at all but 2 of its points, and there is an embedded disk p

in the combined diagram whose boundary is 5 arcs each of which is a horizontal or vertical grid
line (including β, γ), such that going counterclockwise around the boundary one starts at a point in
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Figure 59. Placing a grid diagram G and its commuted grid diagram G′ on a
single diagram. β is the green strand corresponding to a grid line in G and γ is the
red strand corresponding to a grid line in G′.
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Figure 60. The shaded part is a pentagon in Pentβγ(x,y). Here x is denoted by
the blue dots and y is denoted by the yellow dots. Notice that x is a generator in
the grid with the green line (β) and y is a generator in the grid with the red line
(γ).

x∩β, follows a horizontal circle to a point of y, follows a vertical circle to another point of x, follows
a horizontal circle to a point of y∩γ, follows γ to a point in γ∩β, and then follows β to the starting
point. See figure 60. The angles of the pentagon cannot exceed 180◦, so the point of intersection of
β and γ is determined by the orientation given to p. Thus all pentagons in Pentβγ(x,y) contain one
point of intersection and all pentagons in Pentγβ(y,x) contain the other point of intersection.
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Figure 61. The pentagon from z− to z−′.

We define the Pent◦βγ(x,y) to be the set of pentagons in Pentβγ(x,y) containing no point of x or
y. We can now define a chain map Φβγ : CK−(G)→ CK−(G′):

Φβγ(x) =
∑

y∈S(G′)

∑
p∈Pent◦(x,y)

p∩X=∅

U
O1(p)
1 · · ·UOn(p)

n · y

The proof that Φβγ is actually a chain map (i.e. Φβγ ◦ ∂ = ∂ ◦ Φβγ) involves counting rectangle,
pentagon pairs and comparing them to pentagon, rectangle pairs, similar to the argument counting
rectangle, rectangle pairs in the proof that ∂− ◦ ∂− is a differential. The details are in [20]. Fur-
thermore, they show that it is a chain homotopy equivalence explicitly. Therefore, we only need to
show that Φβγ(z±) = z±, where z±′ are the selected elements for G and z±′ for G′.

Figure 60 shows z+ (blue) and z+′ (yellow), and a single pentagon between them. Notice that
any other pentagon from z+ must have boundary along β between the point a and the blue point
of z+ which lies on β. If the other blue point of z+ on the boundary of a pentagon is not the one
shown, then the pentagon will necessarily contain an X since every other point of z+ is in the upper
right corner of a box with an X. Therefore the only pentagon we need to count is the one shown.
Since it cannot contain any O’s, we find that Φβγ(z+) = z+′ as desired.

The argument is similar for z−. The single pentagon from z− to z−′ is shown in figure 61. All
other pentagons will contain an X in the lower left corner, so Φβγ(z−) = z−′. This completes the
proof that z± are invariant under commutation moves.

7.1.2. (De)stabilization. To prove the equivalence of a stabilized and destabilized grid diagram, we
find another chain complex that is quasi-isomorphic to the chain complexes of both the stabilized
and destabilized grid diagrams. Let G be a grid diagram, and H be a grid diagram of a stabilization.

We will first define the map for X : S∗ stabilization. The maps for X : N∗ can be obtained by
rotating all diagrams in the definition by 180◦.

We will denote the X and O in the added column by X1 and O1 respectively, Let m be the vertical
grid line in H just left of X1 and O1 (it will be on the right for stabilizations of type X : N∗). Let n



81

X

X

X

X2

X O

O2

O

O

O
X

X

X

X2

X O

O2

O

O

O

O1

X1

m

n p0

Figure 62. Grid G and its stabilized grid H

be the horizontal circle separating X1 and O1. Let p0 be the point of intersection of m and n. See
figure 62.

Let CG = CK−(G) and CH = CK−(H). Note that CG is over F2[U2, · · · , Un] and CH is over
F2[U1, · · · , Un]. Let C ′ be the mapping cone of

U2 − U1 : CG[U1]→ CG[U1]

i.e. C ′ is the chain complex (CG[U1]⊕CG[U1], ∂′) where ∂′(a, b) = (∂a, (U2 −U1) · a− ∂b), where ∂
is the differential of CG.

To get a quasi-isomorphism from CH to C ′ and then to CG, we need more notation. Let I ⊂ S(H)
denote the subset of generators of CH which contain the point p0. This is in natural bijection with
the generators of CG since if we remove the lines m and n, and the decorations X1 and O1, we get
exactly the grid CG. Choosing generators with p0 ensures that no other point lies on m or n.

We now define a generalization of rectangles between a generator in G and a generator in H.

Definition 19. Suppose x ∈ S(G) and y ∈ I ⊂ S(H). A domain d ∈ π(x,y) is a 2-chain whose
boundary ∂d lies in the vertical and horizontal grid lines whose intersection with the vertices where
the grid lines meet is exactly y−x. This means that the vertices along the boundary alternate between
point of x and points of y and the boundary contains exactly the points of x and y where x and y
disagree.

A domain is said to be of type L or type R if it satisfies the following conditions:
(1) The local multiplicity of p is everywhere non-negative
(2) At each point in x ∪ y there are four adjacent rectangles (see figure 63). If p ∈ x ∪ y, p 6= p0

then the local multiplicity of at least 3 of these adjacent rectangles must be 0. At p0 3 of the adjacent
rectangles must have local multiplicity k. If d is a domain of type L then the lower left rectangle
must have local multiplicity k − 1. If d is a domain of type R then the lower right rectangle must
have local multiplicity k + 1. Examples are shown in figure 64.
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12

3 4

Figure 63. Adjacent rectangles to a point in a generator

Figure 64. L domains from x (blue) to y (yellow) (left), and R domains from
x (blue) to y (yellow) (right). The local multiplicity is indicated by the level of
darkness of the shading.

Note: when defining the map for X : N∗ stabilizations, these definitions will be rotated 180◦.
Using the notation πL(x,y) for domains of type L and πR(x,y) for domains of type R, we define

for x ∈ CK−(G):
FL(x) =

∑
y∈I

∑
d∈πL(x,y)
d∩(X\X1)=∅

U
O2(d)
2 · · ·UOn(d)

n · y

FR(x) =
∑
y∈I

∑
d∈πR(x,y)
d∩(X\X1)=∅

U
O2(d)
2 · · ·UOn(d)

n · y

The chain map which gives the quasi-isomorphism between CH and C ′ is then F : CH → C ′,
defined by F (a) = (FL(a), FR(a)).

We want to show that z± is invariant under the (de)stabilizations that preserve Legendrian
isotopy type: X : NW and X : SE. The relevant chain map that we need to check preserves z± is
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Figure 65. The unique region of type R for the X : NW stabilization (left) and
X : SE stabilization (right). An explicit example is shown on the top, and the
needed local data which is completely general is extracted below. The yellow dots
make up z+ ∈ S(H). The blue dots represent y ∈ I, which is identified with
z+′ ∈ S(G).

φ ◦ F : CH → CG. Notice that
φ ◦ F (x) = φ(FR(x))

where φ(FR(x)) is an element in CG obtained by identifying each generator y ∈ I with the corre-
sponding generator in CG and substituting U2 for any cases of U1. Therefore we need to simply
count the R domains from z± ∈ S(H) which do not contain any X’s except X1. Using a similar
argument as commutation invariance, it is clear that there is only one way to form a region from
z± that does not contain any of {X2, · · · , Xn}, since any other region would have an unwanted X

in the upper right (or lower left for z−) corner. This unique region of type R for X : SE is shown in
figure 65.

For the stabilization of type X : NW we rotate the diagram by 180◦, so a type R region for this
stabilization corresponds to a region with local multiplicity one greater in the upper left adjacent
rectangle. The unique region in this case is shown in figure 65.

In both cases, the unique y ∈ I to which z+ has a region is identified with z+′ ∈ S(G), after grid
lines m and n are collapsed and X1 and O1 are removed. Therefore the image of z+ under the chain
map corresponding to destabilization is z+′. A symmetric argument works for z−.

Because these chain maps are quasi-isomorphisms, this completes the proof that λ± are invariants
of Legendrian knots.
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Figure 66. The unique type R region from z+ under X : SW stabilization. The
yellow dots are z+ in the stabilized diagram. The blue are y which is identified with
z+′ in the destabilized diagram.

7.1.3. The transverse invariant. By analyzing the domains corresponding to X : SW , we can show
that λ+ is invariant under negative stabilizations. As in the proof of invariance under X : NW and
X : SE stabilizations, there is a unique region from z+ which does not contain any of {X2, · · · , Xn}.
This is shown in figure 66.

Since λ+ is invariant under negative stabilizations, it provides a well-defined invariant of transverse
knots. For any transverse knot, find a Legendrian approximations and compute λ+ to get a transverse
invariant. This is independent of the choice of Legendrian approximation by theorem 16.

Note on mirror images: Because of the convention that the grid diagram actually gives the
mirror image of the knot, one might be concerned that we are not getting information about the knots
we are thinking of, but rather of their mirror images. However, these Legendrian and transverse
invariants are preserved by taking the mirror image of a knot with opposite orientation [24], so
results distinguishing mirror image grid diagrams of knots with opposite orientation are equivalent
to results distinguishing the knots themselves.

7.2. Using the invariants to distinguish transverse knots. These invariants would be consid-
erably less interesting if they were unable to actually distinguish Legendrian and transverse knots
that cannot be distinguished through knot type and their classical invariants. Fortunately, these
invariants are quite effective at distinguishing Legendrian and transverse knot types. Furthermore,
they are computable invariants. The C program [23] computes these invariants and some of their
variations. This program adapts the computation of the entire knot Floer homology from [2] to
simply computing whether the transverse invariant (and some of its variations) are trivial. There
are many examples of knots which are distinguishable through these invariants. See [22], [18], and
[1] for individual examples and some infinite families of nonsimple transverse knots.
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Figure 67. The grid diagrams for the two stably distinct versions of the (2, 3)
cable of the (2, 3) torus knot. The diagram on the left is L1 and the diagram on
the right is L2.

To compute these invariants, we need grid diagrams for two candidates which represent the same
topological knot type with the same classical invariants, but are not stably isotopic. While the geo-
metric methods developed in the previous sections were able to generate large classes of transversely
non-simple knots, they did not generate explicit diagrams for these knots. Using techniques that
come from braid theory, Matsuda and Menasco [21] generated grid diagrams for the (2, 3) cable of
the (2, 3) torus knot. L1 corresponds to the (mirror image with opposite orientation of the) (2, 3)
cable of the (2, 3) torus knot of tb = 5, r = 2 which destabilizes, and L2 corresponds to the (mir-
ror image with opposite orientation of the) knot with the same classical invariants that does not
destabilize. These are the explicit diagrams for the (mirror images with opposite orientations of the)
Etnyre-Honda pair. The grids are 17× 17 and are shown in figure 67.
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After running these grid diagrams through the C program, one finds that the transverse invariant
for L1 is null-homologous while the transverse invariant for L2 is not null homologous. This provides
a purely computational proof that the (2, 3) cable of the (2, 3) torus knot is transversely nonsimple.
However, the theory that went into generating these particular diagrams was based in the geometric
constructions of Etnyre and Honda, and the braid theory of Birman, Matsuda, and Menasco. What
we still need to understand is exactly how these vastly different techniques relate to each other to
provide these classification results.

7.3. Conclusion. While the computation of the transverse invariant for the diagrams for the (2, 3)
cable of the (2, 3) torus knot takes some time even with the C program, they can be done, and
indeed the invariant distinguishes them. However, performing the computation with much more
complicated examples requires significant computing power. Furthermore, unless there is a fairly
nice pattern in the grid diagrams, only finitely many examples can be computed at a time. While
the geometric proof is less explicit and requires careful argumentation in convex surface theory, it
proves the existence of infinitely many transversely nonsimple knots for which we cannot compute the
algebraic invariants. On the other hand, the algebraic invariants can identify many other transversely
nonsimple knots besides cables of torus knots. The introduction of various techniques, geometric cut-
and-paste arguments and algebraic transverse invariants, has provided greatly increased knowledge
of knots within contact structures. While there were no examples of transversely nonsimple knots
before about 2006, we now have a wealth of examples. The next step is to try to understand the
connections between these varied techniques to gain a better understanding of why transversely
nonsimple knots exist, so we might find a more careful characterization of exactly when transversely
nonsimple knots appear.
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23. L. Ng, P. Ozsváth and D. Thurston, TransverseHFK.c: A program for computing the transverse invariant

from knot Floer homology. www.http://www.math.columbia.edu/ petero/transverse.html
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