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There is a correspondence between Stein fillings and Lefschetz fibrations which allows us to un-
derstand geometric structures (complex/symplectic) through topological decompositions. On the
boundary we see the Giroux correspondence between contact structures and open book decom-
positions. In this lecture, we will explain these notions and their relations to each other.

1 Stein and Symplectic Fillings

Definition 1.1. A symplectic structure on a manifold X is a closed, non-degenerate 2-form ω.

Symplectic structures on exist on even dimensional manifolds.

In particular, if (W,ω) is a symplectic manifold with boundary ∂W = Y , ω|Y cannot be sym-
plectic. At most ω|Y can be non-degenerate on a hyperplane field.
Definition 1.2. A contact structure on a manifold Y is a hyperplane field ξ defined by the kernel
of a 1-form α such that α ∧ dα 6= 0. Such an α is called a contact form.

We say that (W,ω) has contact type boundary if there is a contact form α where ω|∂W = dα.

A contact structure is a good structure to keep track of on the boundary of a symplectic manifold
because it provides enough information to tell us when two symplectic manifolds with boundary
will glue together. Gluing requires a model collared neighborhood. There are two types of contact
boundary. If (W,ω) has ω|∂W = dα, and the orientation induced by the non-vanishing form α∧dα
agrees with the boundary orientation we say (W,ω) has convex boundary. If the two orientations
disagree we say (W,ω) has concave boundary.

If (W,ω) has convex boundary, we can find a collared neighborhood symplectomorphic to ([−ε, 0]×
∂W, d(etα)) identifying ∂W with ∂W × {0}. Similarly the collar model for concave boundary is
([0, ε]× ∂W, d(etα)). (The t coordinate is in the interval.)

Notice that the vector field ∂t satisfies the equation L∂tω = ω for ω = d(etα) because by Cartan’s
formula

L∂t(d(etα)) = ι∂td(d(etα)) + d(ι∂td(etα)) = d(ι∂t(e
t(dt ∧ α+ dα))) = d(etα)

Any such vector field V with LV ω = ω is called a Liouville vector field. An everywhere transverse
Liouville vector field identifies the boundary with one of these model collars, thus showing the
boundary has contact type. The contact form is defined by α = i∗(ιV ω). If the Liouville vector
field points outward from the boundary the boundary is convex, and if it points inwards the
boundary is concave.
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Definition 1.3. A symplectic manifold (W,ω) with convex contact type boundary is called a
(strong) symplectic filling of the induced contact boundary. A symplectic manifold (W,ω) with
concave contact type boundary is called a concave cap of the induced contact boundary.

There is a significant asymmetry between symplectic fillings and concave caps. For example,
every contact 3-manifold has a concave cap (usually many concave caps with varying topological
properties), but certain classes of contact manifolds have no symplectic fillings. This makes
constructions of symplectic fillings particularly important.

One source of symplectic fillings comes from complex geometry:
Definition 1.4. A Stein manifold is a complex manifold which admits a proper complex embed-
ding into CN .

Such manifolds are necessarily non-compact, but by intersecting with a large ball in CN , we obtain
a compact manifold with boundary called a Stein domain. A Stein domain inherits a symplectic
structure from the standard symplectic structure ωstd =

∑
i dxi ∧ dyi on CN . Restricting the

radial vector field
∑

i
1
2(xi∂xi + yi∂yi) to the Stein domain, provides a Liouville vector field which

points outwardly transverse to the boundary. Therefore a Stein domain has convex contact type
boundary.

We say the Stein domain is a Stein filling of its induced contact boundary.

While every Stein filling is a symplectic filling, the converse is not true. The first examples of
(strong) symplectic fillings which are not Stein are due to Ghiggini. However, there are certain
kinds of contact manifolds where every strong symplectic filling is deformation equivalent to a
Stein filling.

2 Lefschetz fibrations

Now we look at the topological side.
Definition 2.1. A Lefschetz fibration on a 4-manifold X is a map π : X → D2 which has
finitely many critical values t1, · · · , tn ∈ D̊2 such that there is a unique critical point di ∈ π−1(di)
mapping to each critical value, and near each critical point we can choose complex coordinates
(z1, z2) such that in these coordinates π(z1, z2) = z21 + z22 .

Away from the critical values, π is a fibration. When X is a 4-manifold with boundary, the
generic fiber F is a surface (with boundary). If the Lefschetz fibration has no critical points,
then X ∼= F ×D2. Introducing critical points changes the topology but in a carefully controlled
way. Let U be a neighborhood of a critical point with complex coordinates (z1, z2) so that
π(z1, z2) = z21 + z22 in U and the critical point is at (0, 0). Writing zj = xj + iyj we have

π(x1 + iy1, x2 + iy2) = x21 + x22 − y21 − y22 + i(2x1y1 + 2x2y2)

In this explicit form, we can see what happens to the fibers as we approach the critical value. For
simplicity we will look at the family of fibers above positive real numbers approaching 0. Above
c ∈ R+ we have

π−1(c) ∩ U = {(x1 + iy1, x2 + iy2) : x21 + x22 − y21 − y22 = c, x1y1 + x2y2 = 0}
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Figure 1: Fibers near a Lefschetz singularity. Vanishing cycle collapses to a point.

With some observation, we see this fiber is an annulus with core circle Cc = {x21 + x22 = c, y1 =
y2 = 0}. The rest of the annulus is made up of the pair of circles which solve the equations
{x21 + x22 = c + r,< x1, x2 > · < y1, y2 >= 0, y21 + y22 = r} for r > 0. (Once the values x1, x2 are
chosen on the circle of radius c+ r, there are exactly two choices for the pair (y1, y2) on the circle
of radius r which represent a vector orthogonal to < x1, x2 >∈ R2.) As c → 0 the core circle of
the annulus shrinks to a point.

The circle Cc in the non-singular fiber is called a vanishing cycle. The collection of circles Cc

together with the origin form a disk called the thimble.

The difference between a neighborhood of this singular fiber and the neighborhood of a regular
fiber is a single 2-handle attached along the vanishing cycle. (Take the Morse function given by
f = −Re(π) = y21 + y22 − x21 − x22 to see the Morse coordinates near the index 2 critical point.)
Calculating the framing is a little more tricky, but by looking at a coordinate frame for the fiber
near the boundary of the thimble, one can calculate that the framing for the 2-handle is fr(F )−1
where fr(F ) is the framing of the vanishing cycle induced by the fiber F i.e. fr(F ) is a non-zero
section of the normal bundle to the curve in the surface F .

In the 4-manifold X, we just saw that a neighborhood of a Lefschetz critical fiber is built by
attaching a 2-handle to the trivial bundle F ×D2. By gluing together a bunch of these neighbor-
hoods of singular fibers along an interval of regular fibers F along their boundary, we can build a
Lefschetz fibration with any finite number of critical points with specified vanishing cycles.

3 On the boundary: Open book decomposition

The boundary of a Lefschetz fibration π : X → D2 naturally splits into two pieces:

The vertical boundary is made up of the union of the fibers F over points x ∈ ∂D2. Because
there are no critical values in ∂D2, this is a fibration over ∂D2 ∼= S1 with fiber F .

The horizontal boundary is made up of the union of the boundaries of all of the fibers. Each fiber
has boundary diffeomorphic to tnS1 and there is a D2 family worth of these. Thus the horizontal
boundary is diffeomorphic to a disjoint union of solid tori tnS1 ×D2.
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Figure 2: Shows how fr(F ) − 1 surgery on F × S1 gives rise to a manifold F × [0, 1]/(x, 1) ∼
(φ(x), 0) where φ is a right-handed Dehn twist.

Note that every point in ∂X lies in at least one of these pieces and the overlap is a disjoint union
of tori: ∂F × ∂D ∼= tS1 × S1.

The fibers F of the vertical boundary are called the pages of the open book decomposition and
the central circles S1 × {0} of the horizontal boundary are called the binding.

This type of decomposition is precisely the form of an open book decomposition. The data needed
to abstractly build a manifold diffeomorphic to ∂X using the open book decomposition is the
diffeomorphism type of the fiber F together with the monodromy φ of the fibration over S1. Then
one can rebuild a manifold diffeomorphic to ∂X by taking F × [0, 1], and gluing the two ends
together by φ and then collapsing the intervals on the boundary:

∂X ∼= F × [0, 1]/ ∼

where (1, x) ∼ (0, φ(x)) for all x ∈ F and (t, x) ∼ (t′, x) for all x ∈ ∂F .

Each Lefschetz critical point adds a 2-handle attached along a vanishing cycle in a fiber F over
a point in ∂D2 with framing fr(F )− 1. The change in the boundary is to perform Dehn surgery
along that vanishing cycle with framing fr(F )−1. Figure 2 shows how this Dehn surgery changes
the monodromy of the open book by adding a positive Dehn twist into the monodromy.

Open book decompositions exist on every 3-manifold. They were used as a way to create contact
structures by the Thurston-Winkelnkemper construction: take a 2-plane field tangent to the
pages except near the boundary (binding) where it rotates to become positively transverse to
the binding, then perturb this plane field a small amount to make it a contact structure. The
converse is the Giroux correspondence which shows that in fact every contact structure has a
corresponding open book decomposition.
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4 Connecting Lefschetz fibrations with Stein fillings

A Lefschetz fibration on a 4-manifold gives rise to a Stein structure (recall this is a special case
of a symplectic filling). The key to this is the following theorem of Eliashberg
Theorem 4.1 (Eliashberg). A 2n-manifold with a handle decomposition with handles of index
≤ n admits a Stein structure if

• n 6= 2 (i.e. not a 4-manifold)

OR

• n = 2 and the 2-handles are attached along Legendrian knots in the contact boundary of the
0- and 1-handles with framing tb− 1.

Conversely, any Stein manifold admits such a handle decomposition.

In dimension 4, Gompf developed a way to present Kirby calculus diagrams encoding the Stein
structure from such a handle decomposition.

We have a Stein structure on F ×D2 for any surface F with boundary. The contact structure on
the boundary is isotopic to the one induced by the trivial open book which on F × S1 is almost
tangent to the fibers F . Therefore for a circle in a fiber F , the framings agree fr(F )−1 = tb−1,
so we can extend the Stein structure over the 2-handles by the above theorem.

Conversely, given a Stein filling it is possible to find a corresponding Lefschetz fibration. This was
shown first by Loi-Piergallini, and then by a more explicit construction by Akbulut-Ozbagci. Both
methods use Eliashberg’s characterization of Stein manifolds in terms of handle-decompositions.
Therefore Stein fillings (up to deformation) are in one to one correspondence with Lefschetz
fibrations (up to stabilizations - which increases the topology of the fiber and then cancels the
contribution with an extra vanishing cycle, and Hurwitz moves - which exchange the ordering of
the vanishing cycles)

If we fix a contact manifold and want to understand all of its Stein fillings, we can look at all
the compatible open books and for each one, look at all factorizations of the monodromy into
right-handed Dehn twists. In the special case that the contact structure is compatible with a
planar open book (the pages are genus 0), a theorem of Wendl says that all Stein fillings of that
contact manifold are in one to one correspondence with the Lefschetz fibrations whose boundary
is that particular planar open book. Therefore Stein fillings are in one to one correspondence
with factorizations of that particular monodromy element into right-handed Dehn twists (up to
Hurwitz moves).

When we have two positive factorizations (factorizations into right-handed Dehn twists) of the
same monodromy element, we get a monodromy substitution. This corresponds to cutting out one
Stein filling corresponding to one of the Lefschetz fibrations and replacing it with another Stein
filling corresponding to the other Lefschetz fibration. Often these Stein fillings have different
topology. The number of Dehn twists determines the Euler characteristic of the filling, and
knowledge of the specific vanishing cycles allows one to compute the homology, intersection form,
and fundamental group.
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