CH. 6 - SOLUTIONS

2. Let \(S = \{1, 2, \ldots, 10000\} \), \(A_1 \) be the multiples of 4 in \(S \), \(A_2 \) the multiples of 6 in \(S \), \(A_3 \) the multiples of 7 in \(S \), and \(A_4 \) the multiples of 10 in \(S \).

\[
|A_1 \cap A_2 | = 101 - \sum_{i<j} |A_i \cap A_j| - \sum_{i \neq j} |A_i \cap A_j| + 14 \cdot n \cdot A_4 | = 10000 - 2500 - 1666 - 1428 - 1000 + 833 + 357 + 500 + 488 + 571 + 14
\]
\[
\left(\begin{array}{c} 10000 \end{array}\right) \left(\begin{array}{c} 2500 \end{array}\right) \left(\begin{array}{c} 1666 \end{array}\right) \left(\begin{array}{c} 1428 \end{array}\right) \left(\begin{array}{c} 1000 \end{array}\right) \left(\begin{array}{c} 833 \end{array}\right) \left(\begin{array}{c} 357 \end{array}\right) \left(\begin{array}{c} 500 \end{array}\right) \left(\begin{array}{c} 488 \end{array}\right) \left(\begin{array}{c} 571 \end{array}\right) \left(\begin{array}{c} 14 \end{array}\right)
\right)
\]
\[
- 1111 - 166 - 71 - 47 + 23 = 5667
\]

3. Let \(S = \{1, 2, \ldots, 10000\} \), \(A \) the perfect squares in \(S \), and \(B \) as the perfect cubes in \(S \).

\[
|A \cap B| = 131 - |A| - |B| + (|A \cap B| = 10000 - 100 - 21 + 3
\]

(4546 that \(10000 = 100 \), \(\sqrt{10000} \approx 21.5 \), \(\sqrt{10000} \approx 46 \))

4. Let \(T \) be the 10-combinations of \(\{10, 0, 10, b, 10, c, 10, d, 0\} \), and

Let \(A_1 \) be the elements of \(T \) with at least 5 b's,
Let \(A_2 \) be the elements of \(T \) with at least 6 c's, and
Let \(A_3 \) be the elements of \(T \) with at least 8 d's.

Then

\[
|A_1 \cap A_2 \cap A_3| = 111 - \sum_{i<j} |A_i \cap A_j| - \sum_{i \neq j} |A_i \cap A_j| - \sum_{i \neq j} |A_i \cap A_j| - \sum_{i \neq j} |A_i \cap A_j|
\]

\[
\left(\begin{array}{c} 111 \end{array}\right) \left(\begin{array}{c} 5 \end{array}\right) \left(\begin{array}{c} 6 \end{array}\right) \left(\begin{array}{c} 8 \end{array}\right)
\right)
\]

(185 since all double intersections are empty)

5. Let \(T \) be the set of options if there were 12 of each type available, and

Let \(A_1 \) be the options with at least 7 chocolate, \(A_2 \) the options with at least 7 cinnamon, and \(A_3 \) the options with at least 4 plain.

Then

\[
|A_1 \cap A_2 \cap A_3| = 111 - \sum_{i<j} |A_i \cap A_j| - \sum_{i \neq j} |A_i \cap A_j| - \sum_{i \neq j} |A_i \cap A_j|
\]

\[
\left(\begin{array}{c} 111 \end{array}\right) \left(\begin{array}{c} 7 \end{array}\right) \left(\begin{array}{c} 7 \end{array}\right) \left(\begin{array}{c} 4 \end{array}\right)
\right)
\]

(10)

OR CONSIDER CASES, BASED ON HOW MANY PLAIN ARE CHOSEN:

a) 0 plain: \(1 \) option (6 ch., 6 ci.)

b) 1 plain: \(3 \) options (6 ch., 5 ci. or 5 ch., 6 ci.)

c) 2 plain: \(3 \) options (6 ch., 4 ci. or 5 ch., 5 ci. or 4 ch., 6 ci.)

d) 3 plain: \(4 \) options (6 ch., 3 ci. or 5 ch., 4 ci. or 4 ch., 5 ci. or 3 ch., 6 ci.)

TOTAL: \(1 + 2 + 3 + 4 = 10 \) options
8. \(x_1 + x_2 + x_3 + x_4 = 20, \ \ 1 \leq x_1 \leq 6, \ 0 \leq x_2 \leq 7, \ 4 \leq x_3 \leq 8, \ 2 \leq x_4 \leq 6 \)

Let \(y_1 = x_1 - 1, \ y_2 = x_2, \ y_3 = x_3 - 4, \ y_4 = x_4 - 2 \) to get

\[y_1 + y_2 + y_3 + y_4 = 13 \quad \text{with} \quad 0 \leq y_1 \leq 5, \ 0 \leq y_2 \leq 7, \ 0 \leq y_3 \leq 4, \ 0 \leq y_4 \leq 4 \]

Let \(S \) be the set of non-negative integral solutions, \(A \) the elements of \(S \) with \(y_1 \geq 6 \), \(B \) the elements of \(S \) with \(y_2 \geq 8 \), \(C \) the elements of \(S \) with \(y_3 \geq 5 \), and \(D \) the elements of \(S \) with \(y_4 \geq 5 \).

Then

\[
|A \cap B \cap C| = 15! - \sum_{i \leq j} |A_i \cap A_j| - \sum_{i \leq j \leq k} |A_i \cap A_j \cap A_k| + |A_1 \cap A_2 \cap A_3 \cap A_4|
\]

\[
= \left(\binom{15}{3} - \binom{10}{3} - \binom{8}{3} - \binom{11}{3} - \binom{3}{3} + \binom{5}{3} + \binom{5}{3} + \binom{3}{3} + \binom{6}{3} \right) = 96
\]

9. Let \(T \) be the set of permutations of \(S = \{3, a, 4, b, 4, c\} \), and let \(A \) be the permutations with the \(a \)'s consecutive, \(B \) be the permutations with the \(b \)'s consecutive, and \(C \) be the permutations with the \(c \)'s consecutive.

Then

\[
|A \cap B \cap C| = |T| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| - |A \cap B \cap C|
\]

\[
= \frac{9!}{3!3!3!} - \frac{7!}{4!2!3!} - \frac{6!}{3!2!3!} - \frac{8!}{3!4!2!} + \frac{4!}{4!2!3!} + \frac{6!}{4!2!3!} + \frac{5!}{3!3!3!} - 3!
\]

\[
= 871
\]

10. Let \(S \) be the set of selections of 10 stops for the 10 people without restrictions, and let \(A_i \) be the selections of 10 stops where no one exits at stop \(i \), \(1 \leq i \leq 6 \).

Then

\[
|A_1 \cap \ldots \cap A_6| = 15! - \sum_{i \leq j} |A_i \cap A_j| - \sum_{i \leq j \leq k} |A_i \cap A_j \cap A_k| + \ldots + |A_1 \cap A_2 \cap \ldots \cap A_6|
\]

\[
= 6^{10} - \binom{6}{1} 5^{10} + \binom{6}{2} 4^{10} - \binom{6}{3} 3^{10} + \binom{6}{4} 2^{10} - \binom{6}{5} 1^{10}
\]

\[
= 16,435,440
\]