1. Let G be a graph with n vertices.
 a) If G is connected, what is its minimum number of edges?
 b) If G is not connected, what is its maximum number of edges?

2. Find the following, and justify your answers:
 a) A graph that has a Hamilton cycle but does not have a closed Eulerian trail.
 b) A graph that has a closed Eulerian trail but does not have a Hamilton cycle.

3. a) Show that there is no graph with degree sequence $(6, 5, 4, 4, 3, 1, 1)$.
 b) Draw a general graph with degree sequence $(6, 5, 4, 4, 3, 1, 1)$.

4. Prove that a graph $G = (V, E)$ is not connected iff there is a subset U of V
 (with $U \neq \emptyset$, $U \neq V$) such that $xy \in E$ whenever $x \notin U$ and $y \notin U$.

5. For $n \geq 3$, let G_n be the graph obtained from K_n by deleting an edge.
 Find the values of n for which G_n has an Eulerian trail, and justify your answer.

6. In the following, use the definition that a tree is a connected graph
 which has no cycles:
 a) Prove that a graph G is a tree iff G is connected, and every edge of G
 is a bridge.
 b) Prove that a graph G is a tree iff every pair of distinct vertices is
 connected by a unique path.

7. Draw a tree with degree sequence $(5, 3, 3, 3, 1, 1, 1, 1)$, or
 explain why this is impossible.

8. Suppose there are 12 people in a room. Show that either there is at least
 one person who knows at least 6 others, or there is a group of 3 people,
 none of whom know each other.

9. Suppose there are 10 users of Facebook.
 Assume that there are 10 users of Facebook.
 If user k has k friends for $1 \leq k \leq 9$, who are the friends of user 10?

10. Let G be a graph with $2m$ vertices that does not contain a triangle C_3 as a
 subgraph. Use induction on m to prove that G has at most m^2 edges.

11. If C_n is the cycle graph of order n,
 show that its chromatic polynomial is $(k-1)^n + (-1)^n (k-1)$.