A) Find the value of the indicated flow.

B) Find the capacity of the (S,T)-cut
 given by $S = \{s, a, b\}$ and $T = \{c, d, e \}$.

C) Show that $\text{val}(F) = \sum_{uv \in S, v \in T} (f_{uv} - f_{vu})$.

A) Find the value of the indicated flow.

B) Find the capacity of the (S,T)-cut
 given by $S = \{s, a, b\}$ and $T = \{c, d, e \}$.

C) For S, T as above, show that
 $\text{val}(F) = \sum_{uv \in S, v \in T} (f_{uv} - f_{vu})$.

A) Find the missing flows for the arcs,
 and the value of the flow.

B) if $C = \{s, T\}$ where
 $S = \{s, b, d\}$ and $T = \{c, e, b, T\}$,
 find $\text{cap}(C)$.
