1. If \(f(x) = \frac{x^3 + 8}{3x^4} \), find an equation for the tangent line to the graph of \(f \) at the point \((2, f(2)) \).

2. Differentiate the following functions. (Do not simplify your answers.)
 a) \(f(x) = \left(2x^2 + (4x^2 + 1)^5\right)^9 \)
 b) \(f(x) = (\sin x + x)(\tan \frac{x}{2}) \)

3. Find equations for the asymptotes to the graph of \(f(x) = \frac{3x^2 - 5x - 2}{x^2 + 3x - 10} \).
 Vertical: __________
 Horizontal: __________

4. Find the following limits:
 a) \(\lim_{x \to 9} \frac{\sqrt{x} - 3}{x^2 - 9x - 18} \)
 b) \(\lim_{x \to \infty} \left[2\ln \left(\frac{1x}{2x + 3}\right) + \cos \left(\frac{2x}{x^2 + 4}\right) \right] \)

5. If \(G'(x) = \frac{x^3}{x^4 + 8} \) and \(H(x) = G(\cos x) \), find \(H'(x) \).

6. Find \(\frac{dy}{dx} \) for the equation \(y^3 + 2xy - 5y^2 = \frac{4}{x} + 9y \).

7. Use the definition of the derivative as a limit to find \(f'(x) \) for \(f(x) = \sqrt[4]{x^3 - 5x} \).

8. Let \(f(x) = 5x + \frac{20}{x} \),
 a) find the critical numbers for \(f \).
 b) find the relative extrema for \(f \).

9. The height (in feet) of a projectile above the ground after \(t \) seconds is given by \(h(t) = -16t^2 + 48t + 160 \). Find the speed of the projectile when it hits the ground.

10. A rancher wants to use 400 ft of fencing to construct a rectangular corral divided into 3 rectangular sections. Find the largest possible area of the corral.

11. If \(f(x) = \frac{1}{x^3 + 12} \), find the open intervals on which the graph of \(f \) is concave up or concave down.
2. A ladder 20 ft long is leaning against a wall, with the top of the ladder 15 ft above the ground. If the top of the ladder starts sliding down the wall at the rate of $\frac{1}{2}$ ft/sec, how fast is the angle between the ladder and the ground changing 6 seconds later?

3. Find the absolute extrema for $f(x) = 3x^{\frac{3}{2}} - 12x^{\frac{1}{3}}$ on $[-1,4]$.

4. Let $f(x) = \frac{8(2-x)}{(x-1)^2}$, so that $f'(x) = \frac{8(x-3)}{(x-1)^3}$ and $f''(x) = \frac{16(4-x)}{(x-1)^4}$.

 a) Find equations for the asymptotes to the graph of f.
 Vertical: __________
 Horizontal: __________

 b) Find the open intervals on which f is increasing or decreasing.

 c) Find the open intervals on which the graph of f is concave up or concave down.

 d) Sketch the graph of f, showing all asymptotes, relative extrema, points of inflection, and intercepts.

5. Find the critical numbers and relative extrema for $f(x) = \sin^2 x - \sin x$ on the interval $(0, \pi)$.

6. At noon Sam is 200 miles due north of Tucson and Jill is 20 miles due west of Tucson. If Sam is driving south at a rate of 60 mph and Jill is driving east at a rate of 40 mph, find the rate at which the distance between them is changing at 2 pm.

7. A company wants to make a box with a square base and a volume of 10 ft3. If the material for the top and bottom costs $1.2/ft^2$ and the material for the other sides costs $1.60/ft^2$, find the dimensions of the least expensive such box.

8. A right triangle is formed in the first quadrant by the x- and y-axes and a line through the point $(4, 5)$. Find the smallest possible area of such a triangle.