Test 3 Review Problems

1. If \(f(x) = \frac{x^2}{x-5} \), find the relative extrema for \(f \).

2. Let \(f(x) = 3x^5 - 10x^3 \), so \(f'(x) = 15x^4(x^2-2) \) and \(f''(x) = 60x(x^2-1) \).
 a) Find the open intervals on which \(f \) is increasing or decreasing.
 b) Find the open intervals on which the graph of \(f \) is concave up or concave down.

3. If \(f(x) = 3x^{1/3} - 2x^{1/2} + 2 \), find the critical numbers and relative extrema for \(f \).

4. Find the absolute extrema for \(f(x) = \sin x + \sqrt{3} \cos x \) on \(\left[0, \frac{\pi}{2} \right] \).

5. A rancher has 360 ft of fencing to enclose 4 adjacent rectangular corrals. Find the values of \(x \) and \(y \) which will maximize the total enclosed area.

6. Sketch the graph of a rational function \(f \) with the following properties:
 a) \(x = 1 \) and \(x = 3 \) are vertical asymptotes.
 b) \(y = x \) is a slanted asymptote.
 c) \(f(0) = 3 \) is a rel. max.
 d) \(f(3) = 2 \) is a rel. min.
 e) \((3, -1) \) is a point of inflection.

7. Let \(f(x) = \frac{x^4+4}{(x+2)^2} \), so \(f'(x) = \frac{4(x+2)}{(x+2)^3} \) and \(f''(x) = \frac{8(4-x)}{(x+2)^4} \).
 a) Find equations for the asymptotes to the graph of \(f \).
 Vertical: ________ Horizontal: ________
 b) Find the open intervals on which \(f \) is increasing or decreasing.
 c) Find the open intervals on which the graph of \(f \) is concave up or concave down.
 d) Sketch the graph of \(f \), showing all asymptotes, relative extrema, points of inflection, and intercepts.

8. A cylindrical container is to be made from 150 ft \(^2 \) of material. Find the radius and height of the container which will have the largest volume.

9. Just set up a function of 1 variable to be maximized or minimized in the following problems:
 a) Find the area of the largest possible triangle that can be inscribed in a circle of radius 8 in.

10. The combined perimeter of an equilateral triangle and a square is 30 cm. Find the dimensions of the triangle and square which will give a minimum total area.