The definition of the derivative in Sec. 2.1 gives the approximation

\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \]

for \(h \to 0 \).

Solve this approximate equality for \(f(x+h) \).

2. Use the approximation in #1 with

A) \(f(x) = \sqrt{x} \), \(x = 100 \), and \(h = 3 \)

 To approximate \(\sqrt{103} = f(x+h) \).

B) \(f(x) = \sqrt{x} \), \(x = 25 \), and \(h = -2 \)

 To approximate \(\sqrt{23} = f(x+h) \).

C) \(f(x) = \sqrt{x} \), \(x = 8 \), and \(h = 3 \)

 To approximate \(\sqrt{11} = f(x+h) \).

D) \(f(x) = x^6 \), \(x = 1 \), and \(h = .0025 \)

 To approximate \((1.0025)^6 = f(x+h) \).