1. Determine the long-term growth rate and percentage age distribution for a population of female birds with Leslie matrix \(L = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix} \).

2. Find the Taylor polynomial \(P_3(x) \) for \(f(x) = \sqrt{x+3} \) centered at \(a = 1 \).

3. Find an equation for the plane which passes through the point \(P(6,5,-3) \) and is perpendicular to the vector \(\vec{v} = \langle 5, -2, 4 \rangle \).

4. Find the following indefinite integrals:
 a) \(\int \frac{1}{x(1+\ln x)} \, dx \)
 b) \(\int e^{2x} \sin x \, dx \)
 c) \(\int \frac{(x+1)^3}{x^4(x-1)} \, dx \)

5. Solve the following differential equations:
 a) \(\frac{dy}{dx} + y = \frac{1}{1 + e^{2x}} \)
 b) \(\frac{dy}{dx} - y^3 x e^x = 0 \)

6. Find an equation of the plane which passes through the points \(P(1,2,-3) \), \(Q(1,1,1) \), and \(R(-3,-2,1) \).

7. Find the parametric equations for the line which passes through the point \(P(2,3,4) \) and is perpendicular to the plane \(x - y - z = 0 \).

8. Use the comparison test to determine if the integral \(\int_1^3 \frac{3}{\sqrt{x^2 + 4x - 2}} \, dx \) converges or diverges.

9. Let \(A \) be a matrix with eigenvalues \(\lambda_1 = 2 \) and \(\lambda_2 = -3 \) and corresponding eigenvectors \(v_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \). Find \(A^3 \).

10. Find the area of the region bounded by the graphs of \(y = x \), \(y = 1 \), and \(y = \frac{1}{4x} \).

11. Find \(\int \frac{x e^{2x}}{(2x+1)^2} \, dx \).

12. Evaluate \(\int_0^4 \frac{12x}{13x+1} \, dx \).