MATH 178

Sec. 7.5 — Extra Problems

1. Approximate \(\int_0^3 \frac{3}{x^2 + 4} \, dx \) using \(n = 4 \) and
 (Round off answers to 4 decimal places.)
 a) The Midpoint Rule,
 b) The Trapezoidal Rule,
 c) Simpson's Rule.

2. Approximate \(\int_0^4 \frac{10}{\sqrt{x^3 + 1}} \, dx \) using \(n = 4 \) and
 (Round off answers to 4 decimal places.)
 a) The Midpoint Rule,
 b) The Trapezoidal Rule,
 c) Simpson's Rule.

3. The speed of a car in ft/sec after \(t \) sec is given by the following table:

 \[
 \begin{array}{c|ccccccc}
 t \text{ (sec)} & 0 & 5 & 10 & 15 & 20 & 25 & 30 \\
 \hline
 v \text{ (ft/sec)} & 0 & 42 & 60 & 72 & 83 & 90 & \\
 \end{array}
 \]

 Approximate the total distance traveled by the car in the first 30 seconds using
 a) The Trapezoidal Rule,
 (Round off answers to the nearest foot.)
 b) Simpson's Rule.

4. A lot is bounded by two perpendicular roads and a stream. Using the lengths (measured in ft) given below, estimate the area of the lot using
 a) The Trapezoidal Rule,
 (Round off answers to the nearest integer.)
 b) Simpson's Rule.

 \[
 \begin{array}{c|cccccc}
 x \text{ (ft)} & 0 & 10 & 20 & 30 & 40 & 50 & 60 \\
 \hline
 y \text{ (ft)} & 54 & 60 & 64 & 69 & 62 & 48 & 25 \\
 \end{array}
 \]

5. Find the smallest value of \(n \) required to guarantee that the error in approximating \(\int_0^3 \frac{1}{x + 4} \, dx \) is at most \(10^{-5} \) using
 a) The Trapezoidal Rule,
 b) The Midpoint Rule,
 c) Simpson's Rule.