4 If \(\gamma: (a,b) \to C \) is differentiable and \(f: A \to C \) is analytic with \(f([a,b]) \subseteq A \),
then \(\sigma = \gamma \circ \delta \) is differentiable with \(\sigma'(t) = f'(\gamma(t))\gamma'(t) \).

Let \(t \in (a,b) \), and define \(h: A \to C \) by
\[
h(w) = \begin{cases} \frac{f(w) - f(\gamma(t))}{w - \gamma(t)}, & w \neq \gamma(t) \\ f'(\gamma(t)), & w = \gamma(t) \end{cases}
\]
Then \(h \) is continuous at \(\gamma(t) \), since
\[
\lim_{w \to \gamma(t)} h(w) = f'(\gamma(t)) = h'(\gamma(t)) \Rightarrow h \) is continuous at \(\gamma(t) \).
Then \(\sigma'(t) - \sigma'(t) = h'(\gamma(t)) \gamma'(t) - \sigma'(t) = \sigma'(t) - \gamma'(t) \gamma'(t) \) for \(t \neq \gamma(t) \), since
\[
\frac{\sigma'(t) - \sigma'(t)}{t - \gamma(t)} = \frac{f'(\gamma(t)) - f'(\gamma(t))}{t - \gamma(t)} \gamma'(t) = \gamma'(t) - \gamma'(t) = \gamma'(t) - \gamma'(t) \),
and the result holds if \(\gamma(t) = \gamma'(t) \).
So \(\sigma'(t) = \lim_{r \to t} \sigma'(r) \), \(\gamma'(t) = \lim_{r \to t} \gamma'(r) \),
\[
\sigma'(t) = \left(\lim_{r \to t} h'(\gamma(r)) \right) \gamma'(t) = \left(\lim_{r \to t} \frac{f'(\gamma(r))}{\gamma'(r)} \right) \gamma'(t) = h'(\gamma(t)) \gamma'(t).
\]

5 b) \(f(z) = z^6 + 3z^3, z = 0 \)
\[
f'(z) = 6z^5 + 3, \quad f'(0) = 3 \neq 0 \Rightarrow \text{TRANSPARENT VECTORS AT } 0 \text{ THROUGH AN ANGLE OF } \theta = 0 \text{ AND STRETCHES THEM BY A FACTOR OF } \gamma = 3.
\]
\[
c) f(z) = \frac{z^2 + z + 1}{z - 1}, z = 0
f'(z) = \frac{(z - 1)(2z + 1) - (z^2 + z + 1) \cdot 1}{(z - 1)^2}, \quad f'(0) = -\frac{1}{2} \neq \frac{2}{3} \Rightarrow \text{NO FIELD OF TANGENT VECTORS AT } 0 \text{ THROUGH AN ANGLE OF } \theta = \pi \text{ AND STRETCHES THEM BY A FACTOR OF } \gamma = 2.
\]

6 f(z) = \text{is not analytic at any point in } C.
\[
f(z) = \sqrt{z} \Rightarrow f(z) = \sqrt{x + iy}, \quad \text{so } f = u + iv \text{ where } u = \sqrt{x^2 + y^2} \text{ and } v = 0.
\]
Then \(u_x = \frac{x}{\sqrt{x^2 + y^2}}, \quad u_y = \frac{y}{\sqrt{x^2 + y^2}}, \quad \text{for } (x,y) \neq (0,0), \quad \text{and } u_x = 0 = u_y, \quad \text{so } \text{f is not differentiable at } z = 0 = \frac{z}{2} \Rightarrow \text{f is not analytic at any } z \in C.
\]

REMARC Notice that f is not differentiable at 0 since \(f'(0) = \left. \frac{f(z) - f(0)}{z - 0} \right|_{z \to 0} = \lim_{z \to 0} \frac{z}{z} \text{ does not exist!}
\]
\[
\quad i) \text{for } z \in \mathbb{R} \text{ with } z > 0, \quad \frac{z}{z} = 1 \text{ and } \frac{1}{z} = -1.
\]
\[
\quad i) \text{for } z \in \mathbb{R} \text{ with } z < 0, \quad \frac{z}{z} = -1 \text{ and } \frac{1}{z} = -1.
\]
19) \[f(z) = \frac{z+1}{z-1} \]

a) \[f \text{ is analytic on } C \setminus \{1\} \quad \text{(where } z \neq 1) \]

b) Since \[f'(z) = -\frac{2}{(z-1)^2} \]
\[f'(0) = -2 \neq 0 \] and hence \(f \) is conformal at 0.

c) i) Image of x-axis: if \(z = x + iy \), then \(f(z) = \frac{x+1}{x-1} \) and for \(x \in \mathbb{R} \),

\[\frac{x+1}{x-1} = \frac{t}{t} \iff x = t \iff x = \frac{t+1}{t-1} \text{ and } t \neq 1. \]
Therefore, the image of the x-axis is the x-axis with 1 excluded:
\{ \(z \mid \frac{z}{z-1} \), \(y = 0 \) and \(x \neq \frac{1}{2} \). \]

ii) Image of y-axis: if \(z = iy \), then

\[f(z) = \frac{y + i + 1}{y - 1 + iy - 1} = \frac{y^2 + 1 - 1}{y^2 + 1} \]

\[u = \frac{y^2 - 1}{y^2 + 1} \text{ and } v = \frac{2y}{y^2 + 1} \]

\[u^2 + v^2 = \frac{(y^2 - 1)^2 + (2y)^2}{(y^2 + 1)^2} = \frac{(y^2 + 1)^2}{(y^2 + 1)^2} = 1. \]

Therefore, the image lies on the unit circle.

If \(\cos \theta, \sin \theta \) is any point on the circle other than \((1,0)\),

solving \(\cos \theta = \frac{y^2 - 1}{y^2 + 1} \) gives \(y = \pm \frac{1 + \cos \theta}{1 - \cos \theta} \) (with the sign determined by the sign of \(\sin \theta \)).

So this gives a point \(z = iy \) which maps to \((\cos \theta, \sin \theta) \).

Therefore, the image of the y-axis is the unit circle with the point \((1,0)\) deleted:
\{ \(z \mid |z| = 1 \) and \(z \neq \frac{1}{2} \). \}

b) Since \(f \) is conformal at 0 and the x-axis and y-axis intersect at an angle of \(\frac{\pi}{2} \), their images also intersect at an angle of \(\frac{\pi}{2} \).

20) If \(f \) is analytic on a region \(A \) and \(f^{(n+1)}(z) = 0 \) on \(A \),

then \(f \) is a polynomial of degree at most \(n \).

Proof by induction on \(n \):

1) This is true for \(n = 0 \), since \(f(z) = 0 \) on \(A \) implies that \(f \) is constant on \(A \).

2) Assume the statement is true for an integer \(n \), where \(n \geq 0 \),

and let \(f^{(n+1)}(z) = 0 \) on \(A \).

If \(g(z) = f^{(n+1)}(z) \), then \(g'(z) = 0 \) on \(A \) so \(g(z) = C \) on \(A \) for some constant \(C \).

If \(h(z) = f(z) - Cz^n \), then \(h^{(n+1)}(z) = f^{(n+1)}(z) - C = 0 \) on \(A \).

So by the induction hypothesis \(h(z) \) is a polynomial of degree at most \(n \),

Thus \(f(z) = h(z) + \frac{Cz^{n+1}}{(n+1)!} \) is a polynomial of degree at most \(n+1 \),

so the assertion is valid for \(n+1 \).

Remark: Here we are using that \(D^n \left(\frac{z^n}{n!} \right) = 1 \) for any \(n \in \mathbb{N} \),

which follows by induction.
1.6 (b) \(f(z) = \log(z+1) \) gives \(f'(z) = \frac{1}{z+1} \).

If we take the principal branch of \(\log z \), then \(f \) is analytic for \(z+1 \in L = \{ z: x \leq 0 \text{ and } y = 0 \} \), so

\[
\lim_{z \to 0} \frac{e^z - 1}{z} = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0}
\]

so \(\lim_{z \to 0} \frac{e^z - 1}{z} = f'(0) = e^0 = 1 \) since \(D_z(e^z) = e^z \).

(c) \(\lim_{z \to 1} \frac{\log z}{z - 1} = \lim_{z \to 1} \frac{f(z) - f(1)}{z - 1} \) for \(f(z) = \log z \),

so \(\lim_{z \to 1} \frac{\log z}{z - 1} = f'(1) = \frac{1}{1} = 1 \) since \(D_z(\log z) = \frac{1}{z} \).

Ch. 1: Let \(f \) be analytic on \(A \), and define \(g: A \to \mathbb{C} \) by \(g(z) = \overline{f(z)} \).

Let \(f = u + iv \), so \(u_x = v_y \) and \(u_y = -v_x \) since \(f \) is analytic on \(A \). Then \(g = u - iv = u + iv \) where \(v^* = -v \),

so \(g \) is analytic iff \(u_x = v^*_y \) and \(u_y = -v^*_x \)

iff \(u_x = -v_y \) and \(u_y = v_x \)

iff \(v_y = -v_x \) and \(-v_x = v_x \) iff \(v_y = 0 = v_x \),

then \(f' = f_x = u_x + iv_x = 0 \), so \(f \) is constant on \(A \) (assuming \(A \) is a connected open subset of \(\mathbb{C} \)).

(f) \(f(x + iy) = (x^2 + y^2) + i(x^2 + y^2) \).

Where does \(f'(z) \) exist?

Since \(u_x = 2x \) and \(v_y = 2y \)

and \(u_y = 2 \) and \(v_x = 2x \),

so \(f \) is differentiable only at \((-1,-1)\).

Remark: Notice that \(f \) is differentiable at \((-1,-1)\).

Since it has continuous first partials and satisfies the Cauchy–Riemann equations there.