1. Let R be the region bounded by the graphs of $y = x^2 - 5x$ and $y = 3 - 3x$.
 Set up an integral for the volume of the solid generated by revolving R
 a) Around the line $y = -8$.
 b) Around the line $x = 5$.

2. Let R be the region bounded by the graphs of $x = 3y - y^2$ and $x = 4 - 2y$.
 Set up an integral for the volume of the solid generated by revolving R
 a) Around the line $y = -1$.
 b) Around the line $x = 4$.

3. Let R be the region bounded by the graphs of $y = 3\sqrt{x}$ and $y = \frac{3}{2}x$.
 Set up an integral for
 a) The area of R.
 b) The volume of the solid generated by revolving R
 i) Around the line $y = 8$.
 ii) Around the line $x = -3$.

4. Set up an integral for the volume of the solid obtained by revolving the region bounded by the graphs of $y = x^2$ and $y = 3 - 2x$ about the y-axis.

5. For each of the following parametric curves, eliminate the parameter t and then sketch the curve.
 a) $x = 4t^3 - 10t + 4$, $y = 2t - 1$; t in \mathbb{R}.
 b) $x = 5\cos t$, $y = 4\sin t$; $0 \leq t \leq 2\pi$.
 c) $x = 2\tan t$, $y = 2\sec t$; $0 \leq t < \frac{\pi}{2}$.
