1. Find the following limits:
 a) \(\lim_{n \to \infty} \left(1 - \frac{1}{2n} \right)^{6n} \)
 b) \(\lim_{n \to \infty} \left(\frac{n+5}{n+2} \right)^{n+8} \) [HINT: First divide by \(n \) on the top and bottom.]

2. Define \(\{a_n\} \) recursively by \(a_1 = 1 \) and \(a_n = n \cdot a_{n-1} \) for \(n \geq 2 \).
 Find the first 5 terms of the sequence, and a general formula for \(a_n \).

3. Define \(\{a_n\} \) recursively by
 \[a_1 = 2, \quad a_n = \frac{1}{2} \left(2a_{n-1} + 5 \right) \text{ for } n \geq 2. \]
 a) Find the first 3 terms of the sequence.
 b) Given that \(\{a_n\} \) converges, find \(\lim_{n \to \infty} a_n \).

4. A sequence \(\{a_n\} \) is **increasing** (or non-decreasing) if \(a_n \leq a_{n+1} \) for all \(n \).
 And \(\{a_n\} \) is **bounded above** if there is a number \(M \) with \(a_n \leq M \) for all \(n \).
 a) Show that if \(\{a_n\} \) is increasing and bounded above,
 then \(\{a_n\} \) converges.
 b) Show that if \(\{a_n\} \) is increasing and not bounded above,
 then \(\{a_n\} \) diverges to infinity.

5. For the series \(\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right) \),
 a) Use properties of logarithms to rewrite \(\ln \left(1 + \frac{1}{n} \right) \).
 b) Use PART A) to find a formula for \(S_n \).
 c) Use PART B) to find the sum of the series (if it converges),
 or to show that it diverges.

6. For the series \(\sum_{n=1}^{\infty} \frac{2}{n^2 + 2n} \),
 a) Use partial fractions to rewrite \(\frac{2}{n^2 + 2n} \).
 b) Use PART A) to find a formula for \(S_n \).
 c) Use PART B) to find the sum of the series (if it converges),
 or to show that it diverges.

7. If \(\{a_n\} \) is the sequence given by
 \[1, 1 + \frac{1}{3}, 1 + \frac{1}{3 + \frac{1}{3}}, 1 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}, \ldots \]
 a) Find a recursion formula for \(\{a_n\} \).
 b) Assuming that \(\{a_n\} \) converges, find \(\lim_{n \to \infty} a_n \).