1) Does the sequence \(\left\{ \frac{1}{n} \right\} \) converge or diverge?

2) Does the series \(\sum_{n=1}^{\infty} \frac{1}{n} \) converge or diverge?

4) Find the sum of the series (if it converges), or show that it diverges:

\[
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 7(3n+1)}{2^{2n+1}}
\]

\[
\sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{6(4n+1)}
\]

5) Let \(\sum_{n=1}^{\infty} a_n \) be a series whose sequence of partial sums \(\{S_n\} \) is given by \(S_n = \frac{5n+3}{n+1} \).

a) Determine if \(\sum_{n=1}^{\infty} a_n \) converges or diverges.

b) Find \(a_1 \), and a formula for \(a_n \) for \(n \geq 2 \).

6) Determine in each of the following series converges or diverges, and justify your answers.

a) \[\sum_{n=1}^{\infty} \left(\frac{n}{3n+2} \right)^k \]

b) \[\sum_{n=1}^{\infty} \frac{n+1}{n^3+4} \]

c) \[\sum_{n=1}^{\infty} \frac{n^5}{n^k} \]

7) Find an example of two series \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) such that

a) \(\sum_{n=1}^{\infty} b_n \) diverges, but \(\sum_{n=1}^{\infty} (a_n + b_n) \) converges.

b) \(a_n < b_n \) for all \(n \), \(\sum_{n=1}^{\infty} b_n \) converges, and \(\sum_{n=1}^{\infty} a_n \) diverges.