2) \textbf{Show that every bounded decreasing sequence converges.}\n
\textbf{PF} Let \((s_n)\) be a bounded decreasing sequence, and let \(i = \inf E\) where \(E = \{s_n : n \in \mathbb{N}\}\) and \(s_n < i + \varepsilon\) for some \(n \in \mathbb{N}\).

Then \(i - \varepsilon < s_n < i + \varepsilon\) for \(n \geq N\), so \(n \geq N \Rightarrow |s_n - i| < \varepsilon\).

Therefore, \(\lim_{n \to \infty} s_n = i = \inf E\).

3) \textbf{Let } \(S\) \textbf{ be a nonempty bounded subset of } \(\mathbb{R}\) \textbf{ such that } \(\sup S \neq S\). \textbf{Prove that there is a sequence } \((s_n)\) \textbf{ with } \(s_n \in S\) \textbf{ for all } \(n\) \textbf{ and } \(\lim s_n = \sup S\).\n
\textbf{PF} \(T = \sup S\).

For each \(n \in \mathbb{N}\), \(T - \frac{1}{n} < T\) is not an upper bound for \(S\).

So \(T - \frac{1}{n} < s_n\) for some \(s_n \in S\) where \(s_n < T\) since \(T = \sup S\) and \(T \neq S\).

Since \(T - \frac{1}{n} < s_n < T\) for all \(n \in \mathbb{N}\) and \(\lim (T - \frac{1}{n}) = T\) and \(\lim T = T\), \(\lim s_n = T\) by the Squeeze Theorem.

4) \(S_1 = 1\) and \(S_{n+1} = \left(\frac{n}{n+1}\right)S_n^2\) for \(n \geq 1\).

a) \(S_2 = \frac{1}{2}, S_3 = \frac{1}{6}, S_4 = \frac{1}{18}\)

b) 1) \(S_n \leq 1\) for all \(n \in \mathbb{N}\) by induction:

i) This is true for \(n = 1\), since \(S_1 = 1 \leq 1\).

ii) Assume that \(S_n \leq 1\) for some \(n \in \mathbb{N}\), then \(S_{n+1} = \left(\frac{n}{n+1}\right)S_n^2 < S_n^2 \leq 1^2 = 1\).

2) \(S_{n+1} \leq S_n\) for all \(n \in \mathbb{N}\) since \(S_{n+1} = \left(\frac{n}{n+1}\right)S_n^2 < S_n^2 \leq 1, S_0 = S_0\).

3) \(S_n > 0\) for all \(n \in \mathbb{N}\) by induction:

i) This is true for \(n = 1\), since \(S_1 = 1 > 0\).

ii) Assume that \(S_n > 0\) for some \(n \in \mathbb{N}\), then \(S_{n+1} = \left(\frac{n}{n+1}\right)S_n^2 > 0\).

Since \((S_n)\) is decreasing by 2) and bounded below by 3), it converges by the Monotone Convergence Theorem.

c) If \(\lim S_n = S\), then \(\lim S_{n+1} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)S_n^2 = 0 = 1 \cdot S^2 = S^2\).

And \(S^2 = 3\) implies that \(S(S-1) = 0\) so \(S = 0\) or \(S = 1\).

Since \(S \leq \frac{1}{x}\) for \(x \geq 2\), \(S \leq \frac{1}{2}\) and therefore \(S = 0\).
1) Show that if \(\lim_{n \to \infty} S_n = 0 \), then \(\lim_{n \to \infty} \frac{1}{S_n} = 0 \).

Proof (PF): Let \(\varepsilon > 0 \) be given. Since \(\lim_{n \to \infty} S_n = 0 \), there is a positive integer \(N \) such that if \(n \geq N \), then \(S_n > \frac{1}{\varepsilon} \).

Therefore, if \(n \geq N \), then \(\left| \frac{1}{S_n} - 0 \right| = \frac{1}{S_n} < \varepsilon \), so \(\lim_{n \to \infty} \frac{1}{S_n} = 0 \).

b) Show that if \(\lim_{n \to \infty} S_n = 0 \) and \(S_n \geq 0 \) for all \(n \), then \(\lim_{n \to \infty} \frac{1}{S_n} = \infty \).

Proof (PF): Let \(K > 0 \) be given. Since \(\lim_{n \to \infty} S_n = 0 \), there is a positive integer \(N \) such that if \(n \geq N \), then \(|S_n - 0| < \frac{1}{K} \) so \(S_n < \frac{1}{K} \) (since \(S_n \geq 0 \) for all \(n \)).

Then \(\frac{1}{S_n} > K \) for \(n \geq N \), so \(\lim_{n \to \infty} \frac{1}{S_n} = \infty \).

2) Prove that \(\lim_{n \to \infty} T^n = 0 \) if \(r > 1 \).

Proof (PF): Let \(T = \frac{1}{r} \), so \(0 < T < 1 \). Then \(\lim_{n \to \infty} T^n = 0 \) (by Th. 9.9b), so \(\lim_{n \to \infty} T^n = \lim_{n \to \infty} \frac{1}{T^n} = 0 \) by (1b).

3) PF Let \(K > 0 \), and let \(N \) be in \(\mathbb{N} \) with \(N \geq \frac{L.N.K}{L.N.} \).

If \(n \geq N \), then \(n \geq \frac{L.N.K}{L.N.} \Rightarrow n.L.N.K \geq L.N.K \) (since \(L.N. > 0 \)), therefore \(L.N.K \geq L.N.K \), so \(n \geq K \) if \(n \geq N \). Thus \(\lim_{n \to \infty} n^n = \infty \).

4) PF Let \(K > 0 \), and let \(\lambda = r-1 > 0 \). If \(N \) be in \(\mathbb{N} \) with \(N \geq \frac{K-1}{\lambda} \), then \(n \geq N \Rightarrow n \geq \frac{K-1}{\lambda} \Rightarrow n > K-1 \Rightarrow 1 + n > K \), since \((1 + \lambda)^n \geq 1 + n\lambda \) by Bernoulli's inequality, \(n \geq N \Rightarrow (1 + \lambda)^n \geq K \Rightarrow n^n \geq K \), so \(\lim_{n \to \infty} n^n = \infty \).

3) Prove that if \(\lim_{n \to \infty} S_n = 0 \), then \(\lim_{n \to \infty} |15n| = 151 \).

Proof (PF): Let \(\varepsilon > 0 \) be given.

Since \(\lim_{n \to \infty} S_n = 0 \), there is an \(N \) in \(\mathbb{N} \) such that if \(n \geq N \), then \(|S_n - 3| < \varepsilon \).

Therefore \(n \geq N \Rightarrow |15n - 151| < 15 \varepsilon | < \varepsilon \) by the Triangle Inequality.

So \(\lim_{n \to \infty} |15n| = 151 \).

Claim: If \((S_n) \) does not have a convergent subsequence, then \(\lim_{n \to \infty} |15n| = \infty \).

PF (Of the Contrapositive):
Suppose that \(\lim_{n \to \infty} |15n| \neq \infty \); then there is a \(\lambda > 0 \) such that for every \(N \in \mathbb{N} \), there is an \(n \geq N \) such that \(|15n| < \lambda \). Therefore \(|15n| < \lambda \) for infinitely many values of \(n \), so \((S_n) \) has a subsequence \((S_{n_k}) \) with \(|15n_k| < \lambda \) for all \(\lambda \in \mathbb{N} \).

Since \((S_{n_k}) \) is a bounded sequence, it has a convergent subsequence \((S_{n_{k_1}}, S_{n_{k_2}}, S_{n_{k_3}}, \ldots) \) by the Bolzano-Weierstrass Theorem.