A.5 - Prove that \(\sqrt{2} \) is irrational.

PF (by contradiction)

Suppose instead that \(\sqrt{2} \) is rational, so \(\sqrt{2} = \frac{m}{n} \) where \(m, n \in \mathbb{Z} \), \(n \neq 0 \), and \(\frac{m}{n} \) is reduced to lowest terms.

Then \(2 = \frac{m^2}{n^2} \), so \(m^2 = 2n^2 \) and therefore \(m^2 \) is even.

Therefore \(m \) is even, so \(m = 2k \) for some \(k \in \mathbb{Z} \) and \(4k^2 = 2n^2 \).

Then \(n^2 = 2k^2 \), so \(n^2 \) is even and therefore \(n \) is even.

The fact that \(m \) and \(n \) are both even contradicts our assumption that \(\frac{m}{n} \) was in reduced form, so \(\sqrt{2} \) must be irrational.

[Remark: We proved in class that \(m \) is even whenever \(m^2 \) is even by proving the contrapositive, and later we'll prove \(\sqrt{2} \) is irrational using the WOP.]

3. Prove that there are infinitely many primes.

PF 1 (by contradiction)

Suppose instead that there are only finitely many primes \(p_1, \ldots, p_n \), and let \(q = p_1 \cdots p_n + 1 \). Since \(q \) is an integer and \(q > 1 \), \(q \) has a prime factor \(q \neq p_i \) for some \(i \) with \(1 \leq i \leq n \).

Suppose \(q \mid (p_1 \cdots p_n) \), \(p_i \mid (p_1 \cdots p_n) \), and \(q \mid (q - p_i) \). Thus \(q \mid 1 \), and this contradicts the fact that \(1 \) has no prime factors.

So there must be infinitely many primes.

PF 2 (by contradiction)

Suppose instead that there are only finitely many primes, and let \(p \) be the largest prime. If \(n \neq p \), then \(n \) is an integer greater than 1, so \(n \) has a prime factor \(q \neq p \).

Since \(q < p \), \(q \mid p! \) so \(q \mid 1 \) and \(q \mid 1 \) and therefore \(q \mid (p - 1) \). Thus \(q \mid 1 \), and this contradicts the fact that \(1 \) has no prime factors.

So there must be infinitely many primes.

[Remarks: PF 1 is the proof given by Euclid; and we will show the fact used in both proofs that any integer greater than 1 has at least one prime factor. We will also show the fact used in PF 2 that any finite set has a largest element.]

P.3 - Prove that if \(x \) is irrational and \(\gamma \) is rational, then \(x + \gamma \) is irrational.

PF (by contradiction)

Suppose instead that \(x \) is irrational, \(\gamma \) is rational, and \(x + \gamma \) is rational.

Then \(x = (x + \gamma) - \gamma \) would be rational, which gives a contradiction.

Therefore \(x \) is irrational and \(\gamma \) is rational.

Then \(x + \gamma \) must be irrational.