3.7) **False:** Let $S_n = n$ and $T_n = -n$; then $\{S_n\}$ and $\{S_n + T_n\}$ diverge, but $\{S_n + T_n\}$ converges.

False: Let $S_n = (-1)^n$ and $T_n = (-1)^{n+1}$; then $\{S_n\}$ and $\{S_n + T_n\}$ diverge, but $\{S_n + T_n\}$ converges.

True: This follows from Th. 2.15, since $T_n = (S_n + T_n) - S_n$.

False: Let $S_n = \frac{1}{n}$ and $T_n = n$; then $\{S_n\}$ and $\{S_n + T_n\}$ converge, but $\{T_n\}$ diverges.

False: Let $S_n = \frac{1}{n}$; then $\{S_n\}$ converges, but $\{\frac{1}{S_n}\}$ diverges.

True: This follows from Th. 2.16, since $(S_n)^2 = S_n \cdot S_n$.

False: Let $S_n = (-1)^n$; then $\{(S_n)^2\}$ converges, but $\{S_n\}$ diverges.

3.9) **Let** $S_n = \frac{1.3.5 \ldots (2n-1)}{1.4.6 \ldots (2n)}$.

Since $\frac{S_{n+1}}{S_n} = \frac{1.3.5 \ldots (2n-1)(2n+1)}{1.4.6 \ldots (2n)(2n+2)} \cdot \frac{2.4.6 \ldots (2n)}{1.3.5 \ldots (2n-1)} = \frac{2n+1}{2n+2} < 1$ for all n,

$S_{n+1} < S_n$ for all n and therefore $\{S_n\}$ is decreasing.

Since $S_n > 0$ for all n, $\{S_n\}$ is bounded below by 0, so it converges by the Monotone Convergence Theorem.
3.11 - 4) Show that \(Z \) is a cluster point of \(\{S_n\} \) if there is a subsequence \(\{S_{n_k}\} \) converging to \(Z \).

Proof: Suppose \(Z \) is a cluster point of \(\{S_n\} \).

First choose \(S_{n_1} \) in \((Z - \varepsilon, Z + \varepsilon)\). Since there are infinitely many terms in \((Z - \frac{1}{n_1}, Z + \frac{1}{n_1})\), next choose \(S_{n_2} \) in \((Z - \frac{1}{n_1}, Z + \frac{1}{n_1})\) with \(n_2 > n_1 \).

Continuing in this manner, if \(S_{n_k} \) is in \((Z - \frac{1}{n_k}, Z + \frac{1}{n_k})\), we can choose \(S_{n_{k+1}} \) with \(n_{k+1} > n_k \) and \(S_{n_{k+1}} \) in \((Z - \frac{1}{n_{k+1}}, Z + \frac{1}{n_{k+1}})\). By induction, this gives a subsequence \(\{S_{n_k}\} \) with \(S_{n_k} \) in \((Z - \frac{1}{n_k}, Z + \frac{1}{n_k})\) for all \(k \in \mathbb{N} \).

Given \(\varepsilon > 0 \), let \(K \) be an integer with \(K > \frac{1}{\varepsilon} \).

If \(k > K \), then \(Z - \frac{1}{n_k} < \varepsilon \Rightarrow Z - \frac{1}{n_k} < \varepsilon \). Therefore, \(\lim_{n \to \infty} S_{n_k} = Z \).

4) If \(\{S_n\} \) converges to \(Z \), then for every \(\varepsilon > 0 \) there is an integer \(K \) such that \(|S_n - Z| < \varepsilon \) if \(k > K \). Therefore, there are infinitely many terms in \((Z - \varepsilon, Z + \varepsilon)\), so \(Z \) is a cluster point for \(\{S_n\} \).

Remark: This problem shows that the cluster points of a sequence are the same as its subsequential limits.

4.13 - 4) Show that \(\limsup n a_n = \lim \inf n a_n \).

Proof: Let \(S \) be the set of subsequential limits of \(\{a_n\} \), so \(S \) is the set of subsequential limits of \(\{-a_n\} \).

Then \(\limsup (-a_n) = \sup S = -\lim \inf a_n \) (using #7 in 1.6).

And \(\liminf a_n = \limsup (-a_n) = \limsup (-\lim \inf a_n) = -\lim \inf a_n \) (using #7 in 1.6).

4) Show that \(\limsup (a_n + b_n) \leq \limsup a_n + \limsup b_n \) if \(\{a_n\} \) and \(\{b_n\} \) are bounded.

Proof: Let \(T_n = \{a_n: n \geq N\}, \ T_n' = \{b_n: n \geq N\} \), and \(T_n'' = \{a_n + b_n: n \geq N\} \) for each \(N \).

And let \(V_n = \sup T_n, \ V_n' = \sup T_n', \) and \(V_n'' = \sup T_n'' \) for each \(N \).

If \(n \geq N \), then \(a_n + b_n \leq V_n + V_n' \), so \(V_n + V_n' \) is an upper bound for \(T_n'' \).

Then \(\lim V_n'' \leq \lim V_n + \lim V_n' \),

So \(\limsup (a_n + b_n) \leq \limsup a_n + \limsup b_n \).

5) If we let \(a_n = (-1)^n \) and \(b_n = (-1)^n \),

Then \(a_n + b_n = 0 \) for all \(n \geq 0 \),

\(\limsup (a_n + b_n) = 0 \) while \(\lim \sup a_n + \lim \sup b_n = 1 + 1 = 2 \).

(Therefore the inequality is strict in this case.)

Remark: This result holds more generally, except in the case where \(\limsup a_n = \infty \) and \(\limsup b_n = -\infty \) or vice versa, if we adopt the conventions that \(x + (-\infty) = -\infty \) and \(x + \infty = \infty \) for any \(x \in \mathbb{R} \).