\(1 \cdot 13 \cdot 24 \cdot 35 \cdot 46 \cdot 57 = 729 \cdot 162 \cdot 256 \cdot 361 \cdot 484 \cdot 625 = 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 = 7 ! \cdot 13 ! \)

\(\text{Claim:} \quad 1 + 3 + 5 + \cdots + (2n - 1) = n^2 \quad \text{for all } n \in \mathbb{N}, \)

\(\text{Proof:} \quad \text{This is true for } n = 1, \text{ since } 1 = 1^2. \)

\(a) \quad \text{Assume that } 1 + 3 + 5 + \cdots + (2n - 1) = n^2 \quad \text{for some } n \in \mathbb{N}. \)

\(\text{Then } \quad 1 + 3 + 5 + \cdots + (2n - 1) + (2n + 1) = n^2 + (2n + 1) = (n + 1)^2, \)

so the formula is true for \(n + 1. \)

Therefore, \(1 + 3 + 5 + \cdots + (2n - 1) = n^2 \quad \text{for all } n \in \mathbb{N} \text{ by the PMI.} \)

\(\text{Show that } 7^n - 4^n \text{ is divisible by } 3 \quad \text{for all } n \in \mathbb{N}. \)

\(\text{Proof:} \quad \text{This is true for } n = 1, \text{ since } 3| (7^1 - 4^1) \text{ because } 3 \mid 3. \)

\(a) \quad \text{Assume that } 7^n - 4^n \text{ is divisible by } 3 \quad \text{for some } n \in \mathbb{N}. \)

\(\text{Then } \quad 7^n - 4^n = 3k \quad \text{for some } k \in \mathbb{Z}, \text{ so } 7^n = 4^n + 3k \text{ and } \)

\(7^{n+1} - 4^{n+1} = 7 (7^n) - 4 (4^n) = 7 (4^n + 3k) - 4 (4^n) = 21k + 3 (4^n) = 3 (7^n + 4^n); \)

so \(7^{n+1} - 4^{n+1} \text{ is divisible by } 3. \)

Therefore, \(7^n - 4^n \text{ is divisible by } 3 \quad \text{for all } n \in \mathbb{N} \text{ by the PMI.} \)

\(\text{Show that if } x > 0, \text{ then } (1 + x)^n \geq 1 + nx \quad \text{for all } n \in \mathbb{N}. \)

\(\text{Proof:} \quad \text{This is true for } n = 1, \text{ since } 1 + x \geq 1 + x. \)

\(a) \quad \text{Assume that } (1 + x)^n \geq 1 + nx \quad \text{for some } n \in \mathbb{N}. \)

\(\text{Then } \quad (1 + x)^{n+1} = (1 + x) (1 + x)^n \geq (1 + x) (1 + nx) \quad \text{(since } 1 + x > 0) \)

\(= 1 + x + nx + nx^2 \)

\(= 1 + (n+1)x + nx^2 \geq 1 + (n+1)x \quad \text{since } nx^2 \geq 0. \)

Therefore, \((1 + x)^n \geq 1 + nx \quad \text{for all } n \in \mathbb{N} \text{ by the PMI.} \)

\(\text{Remark:} \quad \text{This inequality, which we'll use later on, is called Barrow's inequality;} \)

\(\text{and the proof shows that it is valid for } x > -1. \)

\(\text{Show that } 1^3 + 2^3 + 3^3 + \cdots + n^3 = \left(\frac{n (n+1)}{2} \right)^2 \quad \text{for all } n \in \mathbb{N}. \)

\(\text{Proof:} \quad \text{Since } 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n(n+1)^2}{4} \text{ (as shown on p. A14-A15),} \)

\(\text{it is enough to show that } 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2 (n+1)^2}{4} \text{ for all } n \in \mathbb{N}. \)

\(a) \quad \text{This is true for } n = 1, \text{ since } 1^3 = 1 = \frac{(1(1+1))}{4}. \)

\(a) \quad \text{Assume that } 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2 (n+1)^2}{4}. \quad \text{for some } n \in \mathbb{N}. \)

\(\text{Then } \quad \left[1^3 + 2^3 + 3^3 + \cdots + n^3 \right] + (n+1)^3 = \frac{n^2 (n+1)^2 + (n+1)^3}{4} = \left(\frac{n^2}{4} + \frac{1}{4} \right) \quad \text{(n+1)^2} \]

\(\text{and } \quad \text{so the formula is valid for } n+1. \)

Therefore, \(1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2 (n+1)^2}{4} = \left(\frac{1+2+3+\cdots+n+1}{2} \right)^2 \quad \text{for all } n \in \mathbb{N} \text{ by the PMI.} \)
3. Every integer \(n > 1 \) has a prime factor.

Proof (by contradiction)

Suppose instead that this assertion is false, so there is a set \(T \) containing all integers greater than 1 which do not have a prime factor. Since \(T \) is nonempty, \(T \) has a least element \(m \) by the Well-Ordering Principle. But \(m \) is not a prime (since \(m > 1 \)) and \(m \) is not in \(T \) (since otherwise \(m \) would be a prime factor of itself).

Therefore, there is an integer \(k \) such that \(1 < k < m \) and \(k \) is not in \(T \). Since \(k < m \), \(k \) is the last element of \(T \), \(k \not\in T \). Therefore, \(k \) has a prime factor \(p \) (since \(k > 1 \)). Since \(p \) and \(k \) are integers, \(pk \) is in \(T \). But this contradicts the fact that \(m \) is the last element of \(T \). Therefore, every integer \(n > 1 \) has a prime factor.

Remark: We used this result in A.5-2, and this type of proof is called a proof by minimal counterexample.

4. Every integer \(n > 1 \) can be written as a product of primes.

Proof

1. The assertion is true for \(n = 2 \), since 2 is prime.
2. Let \(n \) be an integer with \(\gcd(n, 2) = 1 \), and assume that the statement is true for all integers \(k \) with \(2 < k < n \).
 a. If \(n + 1 \) is prime, then the statement is true for \(n + 1 \).
 b. If \(n + 1 \) is not prime, then \(n + 1 = kl \), where \(k \) and \(l \) are integers in \(\{2, 3, \ldots, n\} \). Therefore, \(k \) and \(l \) can be written as products of primes by the induction hypothesis, so \(n + 1 \) is also a product of primes.

Thus, in either case, the statement is true for \(n + 1 \), therefore every integer \(n > 1 \) can be written as a product of primes by strong induction.

5. a) Suppose that \(6a + 9b + 20c = 43 \) for some non-negative integers \(a, b, \) and \(c \).
 i) If \(a \leq 0 \), \(6a + 9b = 43 \) has no solution since \(3| \) (6a + 9b) but \(3 \nmid 43 \).
 ii) If \(a \geq 1 \), \(6a + 9b = 43 \) has no solution since \(3| \) (6a + 9b) but \(3 \nmid 43 \).
 iii) If \(a = 0 \), \(6a + 9b = 43 \) has no solution since \(6a + 9b \geq 6 \) unless \(a = 0 \).

Therefore, 43 is not a McNugget number.

b) Every integer \(n \geq 44 \) is a McNugget number.

Proof

1. The integers \(44, 45, \ldots, 49 \) are McNugget numbers since they can be written as \(44 = 6(1) + 20(1) \), \(45 = 9(5) \), \(46 = 6(1) + 20(2) \), \(47 = 9(3) + 20(1) \), \(48 = 6(8) \), and \(49 = 9(1) + 20(2) \).

Let \(n \) be an integer with \(n \geq 44 \), and assume that all integers \(k \) with \(44 \leq k \leq n \) are McNugget numbers.

Since \(44 \leq n - 5 \leq n \), \(n - 5 \) is a McNugget number and therefore \(n - 5 = 6a + 9b + 20c \). Then \(n + 1 = 6(a + 1) + 9b + 20c \), so \(n + 1 \) is a McNugget number.

Therefore, every integer \(n \geq 44 \) is a McNugget number by strong induction.

Remark: Notice that we verified 6 cases in the base step, since 6 was the smallest size order of McNuggets allowed.