1. a) \(n \) does not satisfy A3, A4, and M4.

b) \(2 \) does not satisfy M4.

2. Prove that \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3} \) for all \(n \in \mathbb{N} \).

Proof: Since \(1 \cdot 2 = 2 = \frac{1 \cdot 2 \cdot 3}{3} \), the statement is true for \(n = 1 \).

a) Assume that \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3} \) for some \(n \in \mathbb{N} \).

Then \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n+1) + (n+1) \cdot (n+2) \)

\[= \frac{n(n+1)(n+2)}{3} + (n+1)(n+2) \left(\frac{n+3}{3} \right) \]

\[= \frac{n(n+1)(n+2) + 3(n+2)(n+3)}{3} \]

Therefore, \(1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n \cdot (n+1) = \frac{n(n+1)(n+2)}{3} \) for all \(n \in \mathbb{N} \) by the PMI.

3. Prove that \(5^n - 4n - 1 \) is divisible by 16 for all \(n \in \mathbb{N} \).

Proof: Since \(5^1 - 4 - 1 = 0 \) and 0 is divisible by 16, the statement is true for \(n = 1 \).

a) Assume that \(5^n - 4n - 1 \) is divisible by 16 for some \(n \in \mathbb{N} \).

So \(5^n - 4n - 1 = 16k \) for some \(k \in \mathbb{Z} \). Then \(5^n = 16k + 4n + 1 \), so

\[5^{n+1} - 4(n+1) - 1 = 5(5^n) - 4n - 5 = 5(16k + 4n + 1) - 4n - 5 \]

\[= 80k + 16n + 20 \quad \text{where} \quad 80k + 20 \in \mathbb{Z} \]

Therefore, \(5^{n+1} - 4(n+1) - 1 \) is divisible by 16.

4. Prove that \(2^n > (n+1)^2 \) for all integers \(n \geq 6 \).

Proof: Since \(2^6 = 64 > 49 = 7^2 \), the statement is true for \(n = 6 \).

a) Assume that \(2^n > (n+1)^2 \) for some integer \(n \geq 6 \).

Then \(2^{n+1} = 2(2^n) > 2(n+1)^2 = 2(n^2 + 2n + 1) = 2n^2 + 4n + 2 \)

\[= n^2 + (n^2 + 2n + 2) > n^2 + 2n + 2 = (n+1)^2 \]

so the inequality is valid for \(n+1 \).

Therefore, \(2^n > (n+1)^2 \) for all integers \(n \geq 6 \) by the (generalized) PMI.