1. Let \(n \in \mathbb{Z} \). Prove that if \(n^2 \) is even, then \(n \) is even.

2. Let \(x, y \in \mathbb{R} \). Prove that if \(x \in Q \) and \(y \not\in Q \), then \(x+y \not\in Q \).

3. Prove that \(5^n + 12n + 31 \) is divisible by 16 for all \(n \in \mathbb{N} \) using induction.

4. Use the axioms for a field to prove the following properties. Specify each axiom you are using, and you can also use the result that \(Z \cdot 0 = 0 = 0 \cdot Z \) for all \(Z \).
 a) If \(xy = 0 \), then \(x = 0 \) or \(y = 0 \).
 b) \((-x) \cdot y = -xy\)

5. Let \(T \subseteq \mathbb{R} \), and let \(E = \{ x \in Q : \exists T \} \). Show that \(\text{sup} E = T \).

6. Use the axioms for an ordered field to prove the following properties. Specify each axiom you are using, and you can also use the result that \(Z \cdot 0 = 0 = 0 \cdot Z \) and any results that you have already proved.
 a) If \(x < 0 \) and \(y < 0 \), then \(xy > 0 \).
 b) \(1 > 0 \) [Hint: you can use Part a].
 c) If \(x > 0 \), then \(x^{-1} > 0 \).

7. Prove the following version of the Archimedean property:
 The natural numbers \(\mathbb{N} \) have no upper bound in \(\mathbb{R} \).

8. a) Prove that if \(x \in \mathbb{R} \) with \(x \geq 0 \), then there is an integer \(n \) with \(n \leq x < n+1 \).
 b) Explain why your proof in Part a) is not valid when \(x < 0 \).