1) If \(f(x) = x + \frac{16}{x} + 3 \), find the relative extrema for \(f \).

2) If \(f(x) = 3x^{5/3} + 5x^{2/3} + 7 \), find the critical numbers and relative extrema for \(f \).

3) If \(f(x) = 10x^4 - x^6 \), find the open intervals on which the graph of \(f \) is concave up or concave down.

4) Let \(f(x) = \frac{16(x+1)}{(x+3)^2} \), so \(f'(x) = \frac{16(1-x)}{(x+3)^3} \) and \(f''(x) = \frac{32(x-3)}{(x+3)^4} \).

a) Find equations for the asymptotes to the graph of \(f \).
 - Vertical:
 - Horizontal:

b) Find the open intervals on which \(f \) is increasing or decreasing.

C) Find the open intervals on which the graph of \(f \) is concave up or concave down.

D) Sketch the graph of \(f \), showing all asymptotes, relative extrema, points of inflection, and intercepts.

2) A triangle is formed in the first quadrant by a line through the point (4,3) and the coordinate axes. Find the base and height of the triangle with the smallest area.

3) Find the absolute extrema of \(f(x) = x - 2 \cos x \) on \([0, \frac{3\pi}{2}] \).

4) Sketch the graph of a rational function \(f \) with the following properties:
 a) \(x = 1 \) and \(x = 2 \) are vertical asymptotes.
 b) \(y = 1 - x \) is a slanted asymptote.
 c) \(f(-2) = -2 \) is a relative minimum.
 d) \(f(0) = -4 \) is a relative maximum.
 e) \(f(1) = 1 \) is a relative maximum.
 f) \((1, -2) \) is a point of inflection.

5) Find the largest possible area of a rectangle which can be inscribed in a semicircle of radius 6.

6) Just set up a function of 1 variable to be maximized or minimized in the following problems:
 a) A hiker in the desert is 4 miles from a straight road, and she can walk 2 mph off the road and 3 mph on the road. Find the shortest time required for her to walk to a town which is 6 miles down the road (from the point on the road closest to her).

 b) A cylindrical can with a volume of 60\pi \text{ in}^3 is to be produced using material that costs 25\$/\text{in}^2 for the top and bottom and 10\$/\text{in}^2 for the side. Find the radius and height of the least expensive can.