1. Prove that \(a^n \geq n^a \) for all integers \(n \geq 4 \).

 Proof:
 If \(n = 4 \), this is true since \(4^4 = 16 > 4^1 \).

 Assume that \(a^n \geq n^a \) for some integer \(n \geq 4 \).

 Then \(2^{n+1} = 2(2^n) \geq 2n^4 \), and

 \[
 2n^4 = n^4 + 4n = n^4 + 2n + 2n > n^4 + 2n + 1 = (n+1)^2 \text{ if } n \geq 4,
 \]

 so \(2^{n+1} \geq (n+1)^2 \).

 Therefore, \(a^n \geq n^a \) for all integers \(n \geq 4 \).

2. Use that \(n^2 - 2n = n(n-1) \geq 8 \) if \(n \geq 4 \), so \(2n^2 \geq n^2 + 8 > n^2 + 2n + 1 = (n+1)^2 \).

 Then \(n \geq 4 \Rightarrow \frac{1}{n} \leq \frac{1}{4} \Rightarrow \frac{(n+1)^2}{n^2} = \left(1 + \frac{1}{n}\right)^2 \leq \left(\frac{5}{4}\right)^2 = \frac{25}{16} < 2 \Rightarrow (n+1)^2 \leq 2n^2 \).

3. Let \(U = \sqrt[4]{3 - \sqrt{5}} \). Prove that if \(U^2 \) is irrational, then \(U \) is irrational.

 Proof: (of the contrapositive)

 If \(U \) is rational, then \(U^2 \) is rational (since \(x, y \in \mathbb{Q} \Rightarrow xy \in \mathbb{Q} \)).

4. Prove that \(T = \sqrt[4]{3 - \sqrt{5}} \) is irrational.

 Proof: (by contradiction)

 Assume instead that \(T \) is rational, so \(T^4 = 3 - \sqrt{5} \in \mathbb{Q} \) and

 therefore \(\sqrt{5} = 3 - T^4 \in \mathbb{Q} \). This gives a contradiction (since \(5 \) is not a perfect square), so \(T \) must be irrational.

5. Prove that \(\lim_{n \to \infty} \frac{3n+1}{n+2} = 3 \).

 Proof:

 \[
 \left| \frac{3n+1}{n+2} - 3 \right| = \left| \frac{5}{n+2} \right| < \epsilon \iff \frac{5}{n+2} < \frac{1}{\epsilon} \iff n+2 > \frac{5}{\epsilon} \iff n > \frac{5}{\epsilon} - 2
 \]

6. Let \(\epsilon > 0 \) be given, and let \(N \in \mathbb{N} \) with \(N > \frac{5}{\epsilon} - 2 \).

 If \(n \geq N \), then \(n > \frac{5}{\epsilon} - 2 \Rightarrow n+2 > \frac{5}{\epsilon} \Rightarrow \frac{1}{n+2} < \frac{\epsilon}{5} \Rightarrow \frac{5}{n+2} < \epsilon \)

 \[
 \Rightarrow \left| \frac{3n+1}{n+2} - 3 \right| = \left| \frac{5}{n+2} \right| = \frac{5}{n+2} < \epsilon.
 \]

7. Let \(\epsilon > 0 \) be given, and let \(N \in \mathbb{N} \) with \(N > \frac{5}{\epsilon} \).

 If \(n \geq N \), then \(n > \frac{5}{\epsilon} \Rightarrow \frac{1}{n} < \frac{\epsilon}{5} \Rightarrow \frac{5}{n} < \epsilon \)

 \[
 \Rightarrow \left| \frac{3n+1}{n+2} - 3 \right| = \left| \frac{5}{n+2} \right| = \frac{5}{n+2} < \epsilon.
 \]
5. Prove that \(\mathbb{Q} \) is dense in \(\mathbb{R} \).

 \(\frac{PF}{1.} \) Let \((x, y)\) be an open interval. Since \(y - x > 0 \) and \(1 > 0 \), by the Archimedean Property there is an \(n \in \mathbb{N} \) with \(n(y - x) > 1 \). Then \(ny - nx > 1 \), so there is an integer \(m \) in \((nx, ny)\). Since \(nx < m < ny \), \(x < \frac{m}{n} < y \) and therefore \(\frac{m}{n} \) is in \((x, y)\) with \(\frac{m}{n} \in \mathbb{Q} \). Thus \(\mathbb{Q} \) is dense in \(\mathbb{R} \).

6. Prove that if \(a_n \leq s_n \leq c_n \) for all \(n \in \mathbb{N} \) and \(\lim n \rightarrow \infty a_n = l \) and \(\lim n \rightarrow \infty c_n = l \), then \(\lim n \rightarrow \infty s_n = l \).

 \(\frac{PF}{1.} \) Let \(\varepsilon > 0 \) be given.
 1) Since \(\lim n \rightarrow \infty a_n = l \), there is an \(N_1 \in \mathbb{N} \) such that \(n \geq N_1 \Rightarrow |a_n - l| < \varepsilon \).
 2) Since \(\lim n \rightarrow \infty c_n = l \), there is an \(N_2 \in \mathbb{N} \) such that \(n \geq N_2 \Rightarrow |c_n - l| < \varepsilon \).

 Let \(N = \max\{N_1, N_2\} \).

 If \(n \geq N \), then \(|s_n - l| \leq |s_n - a_n| + |a_n - l| + |c_n - l| + |l - c_n| \leq 2\varepsilon + \varepsilon + \varepsilon = 4\varepsilon \), so \(|s_n - l| < \varepsilon \).
 And therefore \(\lim n \rightarrow \infty s_n = l \).

7. Prove that the natural numbers \(\mathbb{N} \) have no upper bound in \(\mathbb{R} \).

 \(\frac{PF}{1.} \) (By contradiction)

 Suppose instead that \(\mathbb{N} \) is bounded above in \(\mathbb{R} \).

 Then by the completeness axiom, \(s = \sup \mathbb{N} \) exists.

 Since \(s - 1 < s \), \(s - 1 \) is not an upper bound for \(\mathbb{N} \).

 So \(s - 1 \leq m \) for some \(m \in \mathbb{N} \),

 Therefore \(s < m + 1 \) with \(m \in \mathbb{N} \), and this contradicts the fact that \(s \) is an upper bound for \(\mathbb{N} \).

 Therefore \(\mathbb{N} \) has no upper bound in \(\mathbb{R} \).

8. a) Let \(T = \{ r \in \mathbb{Q} : r > 0 \text{ and } x < r^2 < 3 \} \), for example.

 b) Let \(a = 5 - \sqrt{2} \) and \(b = 6 + \sqrt{2} \), for example.

 c) Let \(x_n = \sqrt{n} + \frac{1}{n} \) or \(x_n = \sqrt{1 + \frac{1}{n}} \), for example.
If \(T \) is a nonempty bounded subset of \(\mathbb{R} \) and \(a < 0 \), show that \(\inf(aT) = a \sup(T) \).

PF

1) Let \(s = \sup(T) \), so \(t \leq s \) for all \(t \in T \).

 Then \(aT \geq as \) for all \(t \in T \), so \(as \) is a lower bound for \(aT \).

2) Let \(q \) be any lower bound for \(aT \), so \(q \leq aT \) for all \(t \in T \).

 Then \(\frac{q}{a} \geq t \) for all \(t \in T \), so \(\frac{q}{a} \) is an upper bound for \(T \).

 And therefore \(s \leq \frac{q}{a} \).

Then \(a\cdot s \geq q \cdot \frac{1}{a} \), so \(a \cdot (\sup(T)) = as = \inf(aT) \).