1) Use the field axioms to prove the following results (for all x, y, z in a field F), and give the label (on p. 5) for each axiom that you are using:
 a) \(x(y+z) = xy+xz \)
 b) If \(xy=0 \), then \(x=0 \) or \(y=0 \).
 c) If \(xz=yz \) and \(z\neq 0 \), then \(x=y \).
 d) \((-x)y = -xy \)
 e) \(x0=0 \)

2) If \(x \) and \(y \) are in \(R \), show that \(\max\{x,y\} = \frac{1}{2} [x+y+|x-y|] \), and find a similar formula for \(\min\{x,y\} \).

3) Show that if \(E \) is a nonempty set of integers which is bounded above, then \(\max E \) exists.

4) Use the axioms for an ordered field to prove the following results, and give the label (on p. 5 or p. 7) for each axiom that you are using:
 a) \(x^2 > 0 \) for \(x \neq 0 \)
 b) \(1 > 0 \)
 c) If \(x > 1 \), then \(0 < x^{-1} < 1 \).

5) (In this problem, assume that we have not yet defined roots for real numbers.)
 Let \(E = \{x \text{ in } R : x^2 < 3\} \). Show that \(s = \sup E \) exists, and that \(s^2 = 3 \).

6) Define an order relation on \(C \) by \(a+bi < c+di \) iff \(a < c \), or \(a=c \) and \(b < d \).
 For each of the order axioms, prove or disprove that \(C \) with this relation satisfies the axiom.