Biorthogonal Wavelets of Maximum Coding Gain through Pseudoframes for Subspaces

Matthew Herman
Department of Mathematics
University of California, Davis

Thesis Advisor: Shidong Li
Department of Mathematics
San Francisco State University

SPIE - August 15, 2006
Talk Overview

- Maximum coding gain
 - Goal to minimize the distortion arising from quantization
 - Design filters that are adapted to the statistics of the signal
Maximum coding gain

- Goal to minimize the distortion arising from quantization
- Design filters that are adapted to the statistics of the signal
- Definition: \(G_{SBC} \triangleq \frac{\sigma^2_{q,PCM}}{\sigma^2_{q,SBC}} \)
Talk Overview

- Maximum coding gain
 - Goal to minimize the distortion arising from quantization
 - Design filters that are adapted to the statistics of the signal
 - Definition: \(G_{SBC} \triangleq \frac{\sigma^2_{q,PCM}}{\sigma^2_{q,SBC}} \)

- Pseudoframes for Subspaces (PFFS) biorthogonal wavelet filter construction
 - Parameterizes “out-of-subspace” components
 - Increased flexibility in filter design
 - Combines multiple design criteria into a single parameter

Coding gain of PFFS biorthogonal wavelets can be more than 2.5 times that of CDF spline wavelets
⇒ Savings of more than 0.66 bits per sample

Matthew Herman and Shidong Li
Biorthogonal Wavelets of Maximum Coding Gain through PFFS
Maximum coding gain
- Goal to minimize the distortion arising from quantization
- Design filters that are adapted to the statistics of the signal
- Definition: $G_{SBC} \triangleq \frac{\sigma_{q,PCM}^2}{\sigma_{q,SBC}^2}$

Pseudoframes for Subspaces (PFFS) biorthogonal wavelet filter construction
- Parameterizes “out-of-subspace” components
- Increased flexibility in filter design
- Combines multiple design criteria into a single parameter

Coding gain of PFFS biorthogonal wavelets can be more than 2.5 times that of CDF spline wavelets
⇒ Savings of more than 0.66 bits per sample
Consider

- Signal $x(n)$ which is WSS with zero mean, variance σ_x^2
- Basic b-bit pulse-code-modulation (PCM) quantizer such as

$$x(n) \rightarrow Q \rightarrow x_q(n) = x(n) + q(n)$$

- Number of bits is large enough to model the distortion from quantization $q(n)$ as additive white noise
Consider

- Signal $x(n)$ which is WSS with zero mean, variance σ_x^2
- Basic b-bit pulse-code-modulation (PCM) quantizer such as $x_q(n) = x(n) + q(n)$
- Number of bits is large enough to model the distortion from quantization $q(n)$ as additive white noise
- Well-known that

$$\sigma_{q,\text{PCM}}^2 = c \cdot 2^{-2b} \sigma_x^2$$

where c is a constant of proportionality
SBC Quantization

Consider a two-channel subband coding (SBC) filter bank

- Input has PSD $S_{xx}(\gamma)$
- Filters are biorthogonal FIR
- In the absence of quantizers the filter bank has PR property
- Quantizers are ideal, scalar, uniform, midrise type
- b_0 bits for Q_0, b_1 bits for Q_1, and $b \triangleq \frac{1}{2}(b_0 + b_1)$
- Only source of error is due to noise from quantization
SBC Quantization Continued

- Under ideal conditions: \[\sigma_{q,SBC}^2 = c \cdot 2^{-2b} \phi^{1/2} \]
Under ideal conditions:

\[\sigma_{q,SBC}^2 = c \cdot 2^{-2b} \Phi^{1/2} \]

where

\[\Phi = \left(h^\mathcal{H} R_0 h \right) \left(\tilde{h}^\mathcal{H} R_1 \tilde{h}' \right) \left(\| \tilde{h} \|^2 \right) \left(\| h \|^2 \right) \]

\[h = \{ h_n \}, \tilde{h} = \{ \tilde{h}_n \}, \tilde{h}' = \{ (-1)^n \tilde{h}_n \} \]

\((\cdot)^\mathcal{H} \) denotes the Hermitian transpose, \(\| \cdot \| \) denotes the \(\ell^2 \)-norm, and ...
SBC Quantization Continued

- Under ideal conditions: \(\sigma^2_{q,SBC} = c \cdot 2^{-2b} \Phi^{1/2} \)

where

\[
\Phi = \left(h^H R_0 h \right) \left(\tilde{h}'^H R_1 \tilde{h}' \right) \left(\| \tilde{h} \|^2 \right) \left(\| h \|^2 \right)
\]

\[
h = \{ h_n \}, \quad \tilde{h} = \{ \tilde{h}_n \}, \quad \tilde{h}' = \{ (-1)^n \tilde{h}_n \}, \quad (\cdot)^H \text{ denotes the Hermitian transpose,} \quad \| \cdot \| \text{ denotes the } \ell^2\text{-norm, and ...}
\]

\[
R_k = \int_{-1/2}^{1/2} S_{xx}(\gamma) \begin{bmatrix}
1 & e^{-i2\pi\gamma} & \ldots & e^{-i2\pi(N_k-1)\gamma} \\
e^{i2\pi\gamma} & 1 & \ldots & e^{-i2\pi(N_k-2)\gamma} \\
& \vdots & \ddots & \vdots \\
e^{i2\pi(N_k-1)\gamma} & e^{i2\pi(N_k-2)\gamma} & \ldots & 1
\end{bmatrix} \, d\gamma
\]

- This matrix is positive definite, Hermitian and Toeplitz

Matthew Herman and Shidong Li
Biorthogonal Wavelets of Maximum Coding Gain through PFFS
For fixed b, the subband coding gain compares the noise variances resulting from the PCM and SBC schemes:

$$G_{SBC} \triangleq \frac{\sigma^2_{q,PCM}}{\sigma^2_{q,SBC}}$$
For fixed b, the subband coding gain compares the noise variances resulting from the PCM and SBC schemes:

$$G_{SBC} \triangleq \frac{\sigma^2_{q,PCM}}{\sigma^2_{q,SBC}} = \frac{\sigma^2_x}{\Phi^{1/2}}$$
Definition of Coding Gain and Objective Function

- For fixed b, the subband coding gain compares the noise variances resulting from the PCM and SBC schemes:

$$G_{SBC} \triangleq \frac{\sigma^2_{q,PCM}}{\sigma^2_{q,SBC}} = \frac{\sigma^2_x}{\Phi^{1/2}}$$

- Goal is to maximize G_{SBC}

- For given signal σ^2_x is fixed, thus Φ is our objective function to be minimized
PFFS is a notion of a frame-like expansion for a subspace χ of a separable Hilbert space \mathcal{H}.

$\{x_n\}$ is called a pseudoframe for the subspace χ with respect to $\{x_n^*\}$ if

$$f = \sum_n \langle f, x_n \rangle x_n^*$$

for any $f \in \chi$.

However, $\{x_n\}, \{x_n^*\} \not\subset \chi$.
Constructing PFFS Dual Filters

- Start with a pair of biorthogonal scaling functions \(\varphi, \varphi^0 \in L^2(\mathbb{R}) \) where
 - \(\varphi \) generates an MRA \(\{V_j\} \) of \(L^2(\mathbb{R}) \)
 - \(\varphi^0 \in V_0 \) is the standard dual function of \(\varphi \)
Constructing PFFS Dual Filters

- Start with a pair of biorthogonal scaling functions \(\varphi, \varphi^0 \in L^2(\mathbb{R}) \) where
 - \(\varphi \) generates an MRA \(\{V_j\} \) of \(L^2(\mathbb{R}) \)
 - \(\varphi^0 \in V_0 \) is the standard dual function of \(\varphi \)

- Biorthogonal PFFS duals of \(\varphi \) are given by
 \[
 \tilde{\varphi} \triangleq \varphi^0 + \Delta \varphi
 \]
 where \(\Delta \varphi \in V_0^\perp \) is arbitrary
Now consider $\tilde{\varphi}$ sufficiently regular such that it obeys \[\tilde{\varphi} = \sum_n \tilde{h}_n \tilde{\varphi}_{1,n}\]

where $\tilde{\varphi}_{1,n} = \sqrt{2}\tilde{\varphi}(2t - n)$

Then, \[\tilde{h}_n = \langle \tilde{\varphi}, \varphi_{1,n} \rangle = \langle \varphi^0, \varphi_{1,n} \rangle + \langle \Delta \varphi, \varphi_{1,n} \rangle = h^0_n + \Delta h_n\]
Constructing PFFS Dual Filters

- Given biorthogonal filters $\mathbf{h} = \{ h_n \}, \mathbf{h}^0 = \{ h_0^0 \}$, the sequence $\Delta \mathbf{h} = \{ \Delta h_n \}$ derived from $V_0 \perp$ is uniquely determined.
Constructing PFFS Dual Filters

- Given biorthogonal filters \(h = \{ h_n \}, h^0 = \{ h^0_n \} \), the sequence \(\Delta h = \{ \Delta h_n \} \) derived from \(V_0^\perp \) is uniquely determined.

- With scale parameter \(\lambda \in \mathbb{R} \), the most simple PFFS dual pair is \(h = \{ h_n \}, \tilde{h} = \{ \tilde{h}_n \} \) where

\[
\tilde{h}_n = h^0_n + \lambda \Delta h_n
\]
Constructing PFFS Dual Filters

- Given biorthogonal filters $h = \{h_n\}, h^0 = \{h^0_n\}$, the sequence $\Delta h = \{\Delta h_n\}$ derived from V_0^\perp is uniquely determined.

- With scale parameter $\lambda \in \mathbb{R}$, the most simple PFFS dual pair is $h = \{h_n\}, \tilde{h} = \{\tilde{h}_n\}$ where

$$\tilde{h}_n = h^0_n + \lambda \Delta h_n$$

- More complicated parameter function can accommodate multiple design criteria.

- The regularity of \tilde{h}_n is at least as good as that of h^0_n.

Objective Function with Parameter λ

With the PFFS dual pair h and $\tilde{h} = h^0 + \lambda \Delta h$ we have

$$
\Phi = \left(h^H R_0 h \right) \left(\tilde{h}'^H R_1 \tilde{h}' \right) \left(\| \tilde{h} \|^2 \right) \left(\| h \|^2 \right)
= K \left(A' \lambda^2 + B' \lambda + C' \right) \left(A \lambda^2 + B \lambda + C \right)
$$
With the PFFS dual pair \(h \) and \(\tilde{h} = h^0 + \lambda \Delta h \) we have

\[
\Phi = \left(h^\mathcal{H} R_0 h \right) \left(\tilde{h}^\mathcal{H} R_1 \tilde{h}' \right) \left(\| \tilde{h} \|^2 \right) \left(\| h \|^2 \right)
= K \left(A' \lambda^2 + B' \lambda + C' \right) \left(A \lambda^2 + B \lambda + C \right)
\]

where

\[
K = (h^\mathcal{H} R_0 h)(\|h\|^2),
A' = \Delta h'^\mathcal{H} R_1 \Delta h', \quad B' = 2 \text{Re} \left[h^0'^\mathcal{H} R_1 \Delta h' \right], \quad C' = h^0'^\mathcal{H} R_1 h^0',
A = \| \Delta h \|^2, \quad B = 2 \text{Re} \left[h^0^\mathcal{H} \Delta h \right], \quad C = \| h^0 \|^2,
\Delta h' = \{(-1)^n \Delta h_n\}, \quad h^0' = \{(-1)^n h^0_n\}
Details of Implementation

- Given biorthogonal pair \(h, h^0 \) and PSD \(S_{xx}(\gamma) \) we seek \(\lambda \) which minimizes \(\Phi \)
- Start with Cohen, Daubechies, and Feauveau (CDF) biorthogonal spline filters
- Input signal: auto-regressive type-2 (AR(2)) process with poles at \(0.975e^{\pm i\theta} \)
- Pole at \(\theta \) degrees is indicative of where signal’s energy is focused in the frequency domain
Coding Gain of 4/20 filters for AR(2) Input vs. Pole θ [deg]
Ratio of $G_{\text{PFFS}}, G_{\text{CDF}}$ for AR(2) Input vs. Pole θ [deg]
Result of using $\lambda_{\text{min}} = -0.1465$ for AR(2), $\theta = 66.7^\circ$ Input

(a) Impulse Response vs Time, n

(b) Mag Response vs Normal Freq, γ

(c) Wavelet Function vs Time, t

(d) Scaling Function vs Time, t
Relationship with Bit Gain

For given level of distortion, bits gained using SBC over PCM:

\[\Delta b = \frac{1}{2} \log_2 G_{SBC} \]
For given level of distortion, bits gained using SBC over PCM:

$$\Delta b = \frac{1}{2} \log_2 G_{\text{SBC}}$$

Thus, the bits gained using PFFS over CDF:

$$\Delta b_{\text{PFFS}} - \Delta b_{\text{CDF}} = \frac{1}{2} \log_2 G_{\text{PFFS}} - \frac{1}{2} \log_2 G_{\text{CDF}}$$

$$= \frac{1}{2} \log_2 \frac{G_{\text{PFFS}}}{G_{\text{CDF}}}$$
Relationship with Bit Gain

- For given level of distortion, bits gained using SBC over PCM:
 \[\Delta b = \frac{1}{2} \log_2 G_{SBC} \]

- Thus, the bits gained using PFFS over CDF:
 \[\Delta b_{PFFS} - \Delta b_{CDF} = \frac{1}{2} \log_2 G_{PFFS} - \frac{1}{2} \log_2 G_{CDF} = \frac{1}{2} \log_2 \frac{G_{PFFS}}{G_{CDF}} \]

- For \(\theta = 66.7^\circ \): \(G_{PFFS} = 3.82 \) and \(G_{CDF} = 1.51 \)

- Thus, PFFS gains 0.6691 bits per sample over CDF for AR(2) signals with \(\theta = 66.7^\circ \)
Result of using $\lambda_{\text{min}} = -0.0360$ for White Noise Input

(a) Impulse Response vs Time, n

(b) Mag Response vs Normal Freq, γ

(c) Wavelet Function vs Time, t

(d) Scaling Function vs Time, t
Conclusions/Future Work

- PFFS model can easily incorporate the design criterion of maximizing coding gain
- Constrained problem became unconstrained/more flexible
- For AR(2) signals, the PFFS biorthogonal wavelet filters had a higher coding gain than the same length filters of CDF
- For AR(2) signals $\theta = 66.7^\circ$ the coding gain and resulting bit gain of PFFS were significantly better than that of CDF
Conclusions/Future Work

- PFFS model can easily incorporate the design criterion of maximizing coding gain
- Constrained problem became unconstrained/more flexible
- For AR(2) signals, the PFFS biorthogonal wavelet filters had a higher coding gain than the same length filters of CDF
- For AR(2) signals $\theta = 66.7^\circ$ the coding gain and resulting bit gain of PFFS were significantly better than that of CDF
- Potential to incorporate several design criteria
- PFFS model needs to be tested with other classes of inputs
- Need to see how different length filters affect the coding gain
The end.
PSD for AR(2), $\theta = 66.7^\circ$ and White Noise Inputs
Objective Function Φ vs. λ for AR(2), $\theta = 66.7^\circ$ Input
Objective Function Φ vs. λ for White Noise Input