Consecutive Elements of Order n in $\mathbb{Z}/q\mathbb{Z}$

Thomas Brazelton1, Joshua Harrington2, Siddarth Kannan3, and Matthew Litman4

1The Johns Hopkins University, 2Cedar Crest College, 3Pomona College, 4Penn State University

Introduction

- The subgroup structure of \mathbb{F}_q^\times, the cyclic group of units of \mathbb{F}_q, has been well-studied.
- Little is known about the additive gaps between elements of the same multiplicative order.

Research Question

Given n, can we guarantee that modulo some prime q we can find adjacent elements of order n?

- For prime $q > n$, an element $\alpha \in \mathbb{Z}/q\mathbb{Z}$ has order n if and only if α is a root of $\Phi_n(x)$ in $\mathbb{Z}/q\mathbb{Z}$.
- α and $\alpha + 1$ are both of order n if and only if α is simultaneously a root of $\Phi_n(x)$ and $\Phi_n(x + 1)$.

Example: $\mathbb{Z}/11\mathbb{Z}$

Consider the group of units, $(\mathbb{Z}/11\mathbb{Z})^\times$,

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ord(x)</td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

where the order of x, ord(x), is the smallest positive integer k such that $x^k \equiv 1 \pmod q$.

Here, 3 and 4 are consecutive primitive 5th roots of unity, and 6 and 7 are consecutive primitive 10th roots of unity.

Main Theorem

There exists a prime q such that $\mathbb{Z}/q\mathbb{Z}$ contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

- This is equivalent to showing that there exists a prime $q \equiv 1 \pmod n$ dividing the resultant of the cyclotomic polynomials.
- One shows the existence of these primes by factoring the resultant into norms of algebraic integers, and then analyzing the Lucas and Mersenne divisors which arise.

Interesting Corollaries & Propositions

- For q prime, $\mathbb{Z}/q\mathbb{Z}$ has adjacent elements of odd order n if and only if $\mathbb{Z}/q\mathbb{Z}$ contains adjacent elements of order $2n$.
- There does not exist a finite field $\mathbb{Z}/q\mathbb{Z}$ with two adjacent primitive 6th roots of unity.
- The number of fields for which two consecutive elements of order n can exist is less than or equal to $\varphi(n)^2 \frac{\log(3)}{\log(n+1)}$.

Conclusion

We have succeeded in showing that for any $n \neq 1, 2, 3, 6$, we can produce a prime $q > n$ so that there is an element $\alpha \in \mathbb{F}_q$ where both α and $\alpha + 1$ are primitive nth roots of unity. Additionally, we have bounded the number of such q.

Conjectures

- For $n \neq 1, 2, 3, 6$, all primes $q > n$ dividing Γ_n satisfy $q \equiv 1 \pmod n$.
- Let $n \neq 1, 2, 3, 6$, and let q be a prime. Whenever α and $\alpha + 1$ are primitive nth roots of unity in a finite field \mathbb{F}_q where $q > n$, we have $\alpha \in \mathbb{F}_q$.

Acknowledgments

- National Science Foundation (grant DMS-1560019)
- Muhlenberg College

Tools

Our work came from the study of the following concepts:

- Cyclotomic Polynomials
- Resultant of Polynomials
- Algebraic Integers and Norms
- Lucas & Mersenne Numbers