Definitions

matrix

An $n \times m$ matrix $A = (a_{ij})$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$ is a rectangular array of numbers

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1m} \\
a_{21} & a_{22} & \cdots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nm}
\end{bmatrix}$$

transpose

The transpose of a matrix $A = (a_{ij})$ is $A^T = (a_{ji})$, where a_{ji} is the element in the i-th row and j-th column.

graph, adjacency matrix

A graph is a collection of edges and nodes. The adjacency matrix of a graph is a matrix $A = (a_{ij})$ where a_{ij} represents the number of links between nodes i and j.

diagonal

The diagonal of a matrix $A = (a_{ij})$ is the set $\{a_{ii} : i = 1, \ldots, n\}$

diagonal matrix

A diagonal matrix is a matrix $A = (a_{ij})$ such that $a_{ij} = 0$ if $i \neq j$.

identity matrix

The identity matrix is a square matrix $I = (s_{ij})$ where s_{ij} is the Kronecker delta function $s_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

trace

The trace of $A = (a_{ij})$ is the sum of the diagonal elements $\text{tr} A = \sum_i a_{ii}$

Theorems/Formulas

Let A be a matrix and \mathbf{x} be column vector. If $A\mathbf{x} = \mathbf{0}$, then the vector \mathbf{x} is orthogonal to the rows of A.

$$(AB)^T = B^T A^T$$

Let A, B be matrices such that AB makes sense. Then $(AB)^T = B^T A^T$.

$$\text{tr}(AB) = \text{tr}(BA)$$

For any square matrices A and B, $\text{tr}(AB) = \text{tr}(BA)$

Properties of the Inverse

1. $(A^T)^T = A$
2. $(A B)^T = B^T A^T$
3. $(A^T)^T = (A^T)^T$
4. $(A^T)^T = (A)^T$
Definitions

Permutation

A permutation is the shuffling of n elements. A permutation is even/odd if the number of swaps is even/odd.

Sign Function

The sign function is defined by $\text{sgn}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even} \\ \text{-}1 & \text{if } \sigma \text{ is odd} \end{cases}$

Determinant

The determinant of an $n \times n$ matrix $A = (a_{ij})$ is $\det(A) = \sum_{\sigma} \text{sgn}(\sigma)a_{1\sigma(1)}a_{2\sigma(2)} \ldots a_{n\sigma(n)}$.

Elementary Row Matrices

Minor, Cofactor

Let $A = (a_{ij})$. The minor of a_{ij} is the determinant of A without the ith row and jth column. The cofactor of a_{ij} is $(-1)^{i+j} \text{minor}(a_{ij})$.

Adjoint/Adjugate Matrix

Let $A = (a_{ij})$ be a square matrix. The adjoint (or adjugate) matrix of A is given by $\text{adj } A = (\text{cofactor}(a_{ij}))^T$.

Theorems/Formulas

If a square matrix A has a row of all zeroes, then $\det(A) = 0$.

Determinants of Elementary Row Matrices

- $\det(P_{ij}) = -1$
- $\det(R_i(\lambda)) = \lambda$
- $\det(E_{ij}(\mu)) = 1$

Properties of the Determinant

- $\det(AB) = \det(A) \det(B)$
- $\det(A^T) = \det(A)$
- $\det(A^T) = (\det(A))^T$

If A is invertible, then $A^{-1} = \frac{1}{\det A} \text{adj } A$.

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Elementary Row Matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permutation</td>
<td>P$_{ij}$ swaps rows i and j</td>
</tr>
<tr>
<td>Sign Function</td>
<td>R$_i(\lambda)$ multiplies row i by a scalar λ</td>
</tr>
<tr>
<td>Determinant</td>
<td>E$_{ij}(\mu)$ adds μ times row j to row i</td>
</tr>
<tr>
<td>Minor, Cofactor</td>
<td>Let $A = (a_{ij})$. The minor of a_{ij} is the determinant of A without the ith row and jth column. The cofactor of a_{ij} is $(-1)^{i+j} \text{minor}(a_{ij})$</td>
</tr>
<tr>
<td>Adjoint/Adjugate Matrix</td>
<td>Let $A = (a_{ij})$ be a square matrix. The adjoint (or adjugate) matrix of A is given by $\text{adj } A = (\text{cofactor}(a_{ij}))^T$</td>
</tr>
</tbody>
</table>
Definitions

subspace
A subset U of a vector space V is a subspace of V if U is also a vector space.

span
Let V be a vector space and $S = \{ \vec{s}, \vec{s}_2, \ldots \}$ be a subset of V. Then the span of S is the set $\text{span}(S) = \{ c_1 \vec{s}_1 + \cdots + c_n \vec{s}_n \mid c_i \in \mathbb{R}, n \in \mathbb{N} \}$.

linearly dependent, linearly independent
The vectors $\vec{v}_1, \ldots, \vec{v}_n$ are linearly dependent if there exists constants c_1, \ldots, c_n not all zero such that $c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n = \vec{0}$. Otherwise, the vectors are linearly independent.

linear combination
Any sum of the vectors $\vec{v}_1, \ldots, \vec{v}_n$ multiplied by the scalars c_1, \ldots, c_n namely $c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n$ is a linear combination of $\vec{v}_1, \ldots, \vec{v}_n$.

basis, finite-dimensional, dimension
Let V be a vector space. Then B is a basis for V if B is linearly independent and $V = \text{span}(B)$. If B has only a finite number of elements, then we say V is finite-dimensional. The number of vectors in B is the dimension of V.

Theorems/Formulas

Subspace Theorem
Let U be a nonempty subset of a vector space V. Then U is a subspace of V if and only if $c\vec{u} + d\vec{v} \in U$ for all $\vec{u}, \vec{v} \in U$ and $c, d \in \mathbb{R}$.

For any $S \subseteq V$, $\text{span}(S)$ is a subspace of V.

Linear Dependence
An ordered set of nonzero vectors $(\vec{v}_1, \ldots, \vec{v}_n)$ is linearly dependent if and only if one of the vectors \vec{v}_n is a linear combination of the preceding vectors.

Let $B = \{ \vec{b}_1, \ldots, \vec{b}_n \}$ be a basis for a vector space V. Then every vector $\vec{w} \in V$ can be written uniquely as a linear combination of vectors in the basis B: $\vec{w} = c_1 \vec{b}_1 + \cdots + c_n \vec{b}_n$.

If $B = \{ \vec{b}_1, \ldots, \vec{b}_n \}$ is a basis for a vector space V and $T = \{ \vec{w}_1, \ldots, \vec{w}_m \}$ is a linearly independent set of vectors in V, then $m \leq n$.

For a finite-dimensional vector space V, any two bases for V have the same number of vectors.
<table>
<thead>
<tr>
<th>Definitions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>domain, codomain</td>
<td>Let (f: S \rightarrow T) be a function. Then (S) is the domain of (f), and (T) is the codomain of (f).</td>
</tr>
<tr>
<td>range</td>
<td>The range of a function (f: S \rightarrow T) is the set (\text{ran}(f) = { f(s) \mid s \in S } \subseteq T).</td>
</tr>
<tr>
<td>image</td>
<td>For any subset (U) of the domain (S) of a function (f: S \rightarrow T), the image of (U) is (f(U) = \text{Im}(U) = { f(x) \mid x \in U }).</td>
</tr>
<tr>
<td>pre-image</td>
<td>The pre-image of any subset (U \subseteq T) is (f^{-1}(U) = { s \in S \mid f(s) \in U } \subseteq S).</td>
</tr>
<tr>
<td>one-to-one/injective</td>
<td>The function (f: S \rightarrow T) is one-to-one (or injective) if for any (x \neq y \in S), then (f(x) \neq f(y)).</td>
</tr>
<tr>
<td>onto/surjective</td>
<td>The function (f: S \rightarrow T) is onto (or surjective) if for any (t \in T), there is an (s \in S) such that (f(s) = t).</td>
</tr>
<tr>
<td>bijective</td>
<td>A function (f) is bijective if (f) is injective and surjective.</td>
</tr>
<tr>
<td>nullspace/kernel</td>
<td>The nullspace (or kernel) of a linear function (L: V \rightarrow W) is the set (\ker L = { \bar{a} \in V \mid L(\bar{a}) = 0 } \subseteq V).</td>
</tr>
<tr>
<td>column space, row space</td>
<td>The column space of a matrix is the span of its columns. The row space of a matrix is the span of its rows.</td>
</tr>
<tr>
<td>rank, nullity</td>
<td>The rank of a linear transformation (L) is the dimension of its range. The nullity of a linear transformation (L) is the dimension of the kernel.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorems/Formulas</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A function (f: S \rightarrow T) has an inverse function (g: T \rightarrow S) if and only if (f) is bijective.</td>
<td></td>
</tr>
<tr>
<td>If (L: V \rightarrow W) is a linear transformation, then (\ker L) is a subspace of (V).</td>
<td></td>
</tr>
<tr>
<td>If (L: V \rightarrow W) is a linear transformation, then (\text{ran} L) is a subspace of (W).</td>
<td></td>
</tr>
</tbody>
</table>

Dimension Formula	Let \(L: V \rightarrow W \) be a linear transformation, with \(V \) a finite-dimensional vector space. Then:
	\[\dim V = \dim \ker L + \dim \text{ran} L \]
	\[= \text{null} L + \text{rank} L \]
Invertibility

Let V be an n-dimensional vector space and suppose $L: V \to V$ is a linear transformation with matrix M is an $n \times n$ matrix, and the following statements are equivalent:

1. The matrix M is invertible.
2. The transpose matrix M^T is invertible.
3. The matrix M is row-equivalent to the identity matrix.
4. If $v \in \mathbb{R}^n$, then $Mx = v$ has exactly one solution.
5. If $v \in V$, then $L(x) = v$ has exactly one solution.
6. The homogeneous solution $Mx = 0$ has no nonzero solutions.
7. The determinant of M is not equal to 0.
8. The columns (or rows) of M span \mathbb{R}^n.
9. The columns (or rows) of M are linearly independent.
10. The columns (or rows) of M are a basis for \mathbb{R}^n.
11. The linear transformation L is injective.
12. The linear transformation L is surjective.
13. The linear transformation L is bijective.