MAT 127A - Real Analysis - Fall 19

Exercise 13: Let $A \subset \mathbb{R}$ be nonempty and bounded. Prove that $\sup A \in \overline{A}$. Can an open set ever contain its supremum?

Exercise 14: Determine true or false. Provide proof or counterexample.

- An open subset of \mathbb{R} containing \mathbb{Q} must be \mathbb{R}.
- If U is an open nonempty set, then $U \cap \mathbb{Q} \neq \emptyset$.

Exercise 15: Assume A, B are proper nonempty subsets of \mathbb{R}. Suppose A is open and B is closed. Determine if the following sets are open, closed, both or neither.

- $\overline{A \cup B}$
- $A \setminus B$
- $(A^c \cup B)^c$
- $(A \cap B) \cup (A^c \cap B)$
- $(\overline{A})^c \cap \overline{A^c}$