Exercise 1: Let \(f(x) = \frac{2x - 3}{2x - 5} \). Does the equation \(f(x) = 0 \) has a solution between
 a) \(x = 0 \) and \(x = 1 \).
 b) \(x = 1 \) and \(x = 2 \).

Exercise 2: Compute the limits
 a) \(\lim_{x \to 0} \frac{\sqrt{x^4 + 1} - 1}{x} \).
 b) \(\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} \).

Exercise 3: (Example of a differential equation: Logistic growth) Let \(N(t) \) be the population size at time \(t \). We call
\[
\frac{1}{N(t)} \frac{dN}{dt} = \frac{1}{N} \frac{dN}{dt}
\]
the per capita growth rate (we dropped the \(t \) dependence in the denominator in \(\frac{1}{N(t)} \frac{dN}{dt} \) to shorten notation, we also do this in the following). The quantity \(\frac{1}{N} \frac{dN}{dt} \) gives you the change of the population at time \(t \) divided by the size of the population at time \(t \), therefore per capita growth rate. We assume now that the capita growth rate satisfies
\[
\frac{1}{N} \frac{dN}{dt} = \left(1 - \frac{N}{K} \right)
\]
with initial condition \(N(0) > 0 \), i.e. the population is not initially 0 and some \(K > 0 \), which we call the carrying capacity.
 a) Find all initial conditions such that \(\frac{dN}{dt} = 0 \). We call such points equilibria of the equation.
 b) Show that
\[
N(t) = \frac{KN_0}{N_0 + (K - N_0)e^{-t}}
\]
solves equation (1) with initial condition \(N(0) = N_0 \).
(You can use \(\frac{d}{dx} e^{-t} = -e^{-t} \))
c) Compute
\[\lim_{t \to \infty} N(t). \]
d) Plot \(N(t) \) using \(R \) between \(t = 0 \) and \(t = 10 \) for initial conditions \(N_1 = 1, N_2 = 10 \) and \(N_3 = 15 \) and \(K = 20. \)

(Remark:
1. The bigger the carrying capacity \(K \) in the equation the higher the limiting population for \(t \) going to infinity.
2. Compare the exercise to the discrete logistic equation done in class.)

Exercise 4: Let \(c > 0 \) and
\[f(x) = \frac{c}{x}, \quad x > 0. \quad (2) \]
a) Find the tangent line to the graph of the function at the point \((x_0, f(x_0)) \).
Compute the point where the tangent line intersects the \(x \)-axis and conclude that this point is independent of \(c \).
b) Find the normal line to the graph of \(f \) in the point \((1, 1) \). (The normal line is perpendicular to the tangent line, if the tangent line has the equation \(y = ax + b \) then the slope of the normal line is \(-a^{-1} \))