Lieb-Robinson bounds for a class of continuum many-body fermion systems

Martin Gebert
University of California, Davis

April 22, 2020
Random Matrix and Probability Seminar
Harvard University

joint work with B. Nachtergaele, J. Reschke and R. Sims
Consider the Schrödinger equation on $\ell^2(\mathbb{Z}^d)$

$$-i\frac{d}{dt}\varphi_t = (-\Delta_d + V)\varphi_t$$

$$\varphi_0 = \delta_0$$

Solution is $\varphi_t = e^{-itH}\delta_0$ with $H = -\Delta_d + V$. Find estimates on

$$|\langle e^{-itH}\delta_0 \rangle(n)| \leq ???$$

Trotter product formula and decay of $\langle \delta_k, e^{-it(-\Delta_d)}\delta_m \rangle$ imply

$$|\langle e^{-itH}\delta_0 \rangle(n)| = |\langle \delta_n, e^{-itH}\delta_0 \rangle| \leq Ce^{c_1 t} e^{-c_2 n}$$

independently of $V \in \ell^\infty(\mathbb{Z}^d)$.

If you sit at distance n it takes (at least) order $t \sim n$ until you feel something (ballistic propagation). Finite speed of propagation in non-relativistic model.

We are interested in analogue bounds for many-body systems.
What are Lieb-Robinson bounds?

- Spin-chain, i.e. \(\mathcal{H}_N = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \) and Hamiltonian

 \[
 H^{(N)} = H_{12} + H_{23} + \cdots + H_{N-1N} \quad \text{(short-range)}
 \]

- \(A, B \in BL(\mathbb{C}^2) \)

 \[
 \delta_0 \equiv \text{id} \otimes \cdots \otimes A \otimes \cdots \otimes \text{id} \otimes \cdots \otimes \text{id}
 \]
 \[
 \delta_n \equiv \text{id} \otimes \cdots \otimes \text{id} \otimes \cdots \otimes B \otimes \cdots \otimes \text{id}
 \]

- Time evolution of \(A \)

 \[
 e^{itH} A e^{-itH} \quad \text{(Heisenberg evolution)}
 \]

 and one can estimate

 \[
 \left\| [e^{itH} A e^{-itH}, B] \right\| \leq C e^{c(vt - \text{dist}(A, B))} \quad \text{(LR-bound)}
 \]

 Until \(t \sim \text{dist}(A, B) \) commutator is exp. small. Propagation is at most ballistic.

- Lieb-Robinson 60ies: Finite speed of propagation in non-relativistic model!
Consider interacting Fermions in representation on Fock space.

- For fixed particle number $N \in \mathbb{N}$

$$H_N = \sum_{k=1}^N \left(-\Delta_k + V(x_k) \right) + \sum_{1 \leq k < l \leq N} W(x_k - x_l)$$

acting on $(L^2(\mathbb{R}^N \times \mathbb{R}^d))^-$ (anti-symmetric) with $V, W \in L^\infty(\mathbb{R}^d)$.

- We don’t want to consider fixed particle number! Introduce

$$\mathcal{F}^- = \bigoplus_{N=0}^\infty (L^2(\mathbb{R}^N \times \mathbb{R}^d))^-(\text{anti-symm. Fock space})$$

Then

$$\bigoplus_{N=0}^\infty H_N = \bigoplus_{N=0}^\infty \left(\sum_{k=1}^N \left(-\Delta_k + V(x_k) \right) + \sum_{1 \leq k < l \leq N} W(x_k - x_l) \right)$$

$$= \int_{\mathbb{R}^d} dx \ a_x^* (-\Delta + V) a_x + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} dx dy \ W(x - y) a_x^* a_y^* a_y a_x$$
Model: Interacting Fermions in \mathbb{R}^d

\[\mathcal{H} = \int_{\mathbb{R}^d} dx \ a_x^* (-\Delta + V) a_x + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} dx dy \ W(x - y) a_x^* a_y^* a_y a_x \]

- $a_x = a(\delta_x)$ and $a_x^* = (a(\delta_x))^*$ are annihilation and creation operators of a particle in state δ_x.

- More generally $a(f)$, $a(g)$ satisfy CAR

\[\{a(f), a(g)\} = 0 \quad \text{and} \quad \{a(f), a^*(g)\} = \langle f, g \rangle \mathbb{1} \]

For all $f, g \in L^2(\mathbb{R}^d)$

\[\|a(f)\| = \|a^*(f)\| = \|f\|_2 \]

- Introduce infra-red and ultra-violet cutoff to make interaction bounded.
\[H = \int_{\mathbb{R}^d} dx \ a_x^* (-\Delta + V) a_x + \frac{1}{2} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} dx dy \ W(x - y) a_x^* a_y^* a_y a_x \]

- Introduce infra-red and ultra-violet cutoff

\[H^\sigma_{\Lambda_L} = d\Gamma(-\Delta + V) + W^\sigma_{\Lambda} \]

with \(\Lambda_L = [-L, L]^d \), \(\sigma > 0 \)

\[W^\sigma_{\Lambda} = \frac{1}{2} \int_{\Lambda_L} \int_{\Lambda_L} dx \ dy \ W(x - y) a_x^* (\phi^\sigma_x) a^*(\phi^\sigma_y) a(\phi^\sigma_y) a(\phi^\sigma_x) \]

and Gaussian

\[\phi^\sigma_x(y) = \frac{1}{(2\pi\sigma^2)^{d/2}} e^{-\frac{|y - x|^2}{2\sigma^2}} \]

- Particles interact as having finite size \(\sigma \)
- Particles only interact in box \(\Lambda_L \).
\[H^{\sigma}_{\Lambda_L} = d\Gamma(-\Delta + V) + \frac{1}{2} \int_{\Lambda_L} \int_{\Lambda_L} dx \, dy \, W(x - y) a^*(\varphi^\sigma_x) a^*(\varphi^\sigma_y) a(\varphi^\sigma_y) a(\varphi^\sigma_x) \]

- \(\sigma > 0 \) is ‘size’ of particles
- For \(\sigma \to 0 \), \(\varphi^\sigma_x \to \delta_x \). For \(\sigma \) small our model should be close to initial model

Consistency:

Lemma.

For real-valued \(V, W \in L^\infty(\mathbb{R}^d) \) and compact \(\Lambda \subset \mathbb{R}^d \) (fix infra-red cutoff)

\[H^{\sigma}_{\Lambda} \to H_{\Lambda} \]

in the strong resolvent sense as \(\sigma \downarrow 0 \).

- Fix particle size \(\sigma > 0 \) and our goal is to take \(\Lambda \to \infty \) in terms of dynamics
Background potential and interaction

\[H_{\Lambda_L}^\sigma = d\Gamma(-\Delta + V) + \frac{1}{2} \int_{\Lambda_L} \int_{\Lambda_L} dx \, dy \, W(x - y) a^*(\varphi_x^\sigma) a^*(\varphi_y^\sigma) a(\varphi_y^\sigma) a(\varphi_x^\sigma) \]

- Interaction: \(W \) symmetric and
 \[|W(x)| \leq Ce^{-c|x|} \] (short-range interaction)

- Background potential \(V \): Fourier transform of signed, compactly supported, finite measure \(\mu \), which is real-valued and bounded, i.e.
 \[V(x) = \int_{B_M} d\mu(k) e^{-ik \cdot x} \]

Important: Finite support in momentum space!
- \(V(x) = \cos(x) \) (any real-valued trigonometric polynomial works)
- \(V(x) = \text{sinc}^k(x) \) (\(d\mu(x) = 1_{(-1,1)} dx \))

- We wanted to include periodic background potential \(V \).
 Spectral gap persists for small coupling?
Model: The CAR algebra

- For $A \in \mathcal{B}(\mathcal{F}^-)$ and $t \in \mathbb{R}$

$$\tau_t^\Lambda(A) = e^{itH^\Lambda} Ae^{-itH^\Lambda}$$

(Heisenberg dynamics).

We analyze this dynamics not for all $A \in \mathcal{B}(\mathcal{F}^-)$ only for

$$A \in \overline{\mathcal{A}(\{a(f), a^*(f) : f \in L^2(\mathbb{R}^d)\})}\|\cdot\|$$

(CAR-Algebra)

- $f, g \in L^2(\mathbb{R}^d)$ with supp $f \cap$ supp $g = \emptyset$ then by the CAR relations

$$\{a(f), a(g)\} = 0 \quad \text{and} \quad \{a(f), a^*(g)\} = \langle f, g \rangle 1 = 0$$

\{·, ·\} is anti-commutator. We are interested in bounds on

$$\{\tau_t^\Lambda(a(f)), a(g)\} \quad \text{and} \quad \{\tau_t^\Lambda(a(f)), a^*(g)\}$$
We aim at estimating for \(f, g \in L^2(\mathbb{R}^d) \) with \(\text{supp} f \cap \text{supp} g = \emptyset \)

\[
\left\| \{ \tau_t^\Lambda (a(f)), a(g) \} \right\| + \left\| \{ \tau_t^\Lambda (a(f)), a^*(g) \} \right\|
\]

but there is a caviat!

For non-interacting system \(W = 0 \)

\[\tau_t^0(a(f)) = a(e^{-it(-\Delta+V)}f)\]

and therefore

\[
\left\| \{ \tau_t^0(a(f)), a^*(g) \} \right\| = \left\| \{ a(e^{-it(-\Delta+V)}f), a^*(g) \} \right\| = |\langle e^{-it(-\Delta+V)}f, g \rangle|
\]

This does for general \(f, g \in L^2_c(\mathbb{R}^d) \) not decay exponentially in \(\text{dist}(\text{supp} f, \text{supp} g) \), e.g. for \(V = 0 \)

\[e^{-it(-\Delta)}(x, y) = \frac{1}{(4\pi it)^{d/2}} e^{\frac{i|x-y|^2}{4t}} \quad (\text{non-relativistic operator})\]

We aim at estimating difference to free \((W = 0)\) dynamics

\[F_t^\Lambda(f, g) = \left\| \{ \tau_t^\Lambda (a(f)), a^*(g) \} - \{ \tau_t^0(a(f)), a^*(g) \} \right\| + \left\| \{ \tau_t^\Lambda (a(f)), a(g) \} \right\|\]
Lieb-Robinson bounds for interacting Fermions

\[F^\Lambda_t(f, g) = \| \{ \tau^\Lambda_t(a(f)), a^*(g) \} - \{ \tau^\emptyset_t(a(f)), a^*(g) \} \| + \| \{ \tau^\Lambda_t(a(f)), a(g) \} \| \]

Theorem (Many-body Lieb-Robinson bound GNRS ’20).

Fix \(\sigma > 0 \) and \(W \) exponentially decaying and \(V \) with finite support in momentum space. Then there exist constants \(C_1, C_2 > 0 \) such that for all compact \(\Lambda \subset \mathbb{R}^d \), \(t \in \mathbb{R} \) and any \(f, g \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d) \)

\[F^\Lambda_t(f, g) \leq \| f \|_1 \| g \|_1 e^{C_1 t^d + \frac{d(f, g)}{1 + t^2}} e^{-C_2 \frac{d(f, g)}{(1 + t^2)}} \]

where \(d(f, g) = \text{dist}(\text{supp } f, \text{supp } g) \).

- Decay as long as \(t^{6d+3} < d(f, g) \). The exponent \(6d + 3 \) is most likely not optimal.
- Finite speed of propagation.
- Independent of \(\Lambda \) but constants explode for \(\sigma \to 0 \).
Application: Thermodynamic limit of dynamics exists

Theorem (Many-body Lieb-Robinson bound GNRS ’20).
There exists a strongly continuous one-parameter group of automorphisms of the CAR algebra over $L^2(\mathbb{R}^d)$, $\{\tau_t\}_{t \in \mathbb{R}}$, such that for all $f \in L^2(\mathbb{R}^d)$ and any increasing sequence (Λ_n) of compact sets such that $\bigcup_n \Lambda_n = \mathbb{R}^d$,

$$\lim_{n \to \infty} \tau_t^{\Lambda_n}(a(f)) = \tau_t(a(f))$$

in the operator norm topology, with convergence uniform in t on compact subsets of \mathbb{R}.

- Infinite volume dynamics exists.
- Independent of representation.
- The theorem implies strong continuity of $t \mapsto \tau_t(\cdot)$. This is important as by Stone’s theorem we get generator (in GNS-representation): 'Infinite-volume operator'.
Idea proof: Lieb-Robinson bounds

\(F^\Lambda_t(f, g) = \|\{\tau^\Lambda_t(a(f)), a^*(g)\} - \{\tau^\emptyset_t(a(f)), a^*(g)\}\| + \|\{\tau^\Lambda_t(a(f)), a(g)\}\| \)

- **Interaction picture implies**

\[
\tau^\Lambda_t(a(f)) = \tau^\emptyset_t(a(f)) + i \int_0^t ds \tau^\Lambda_s \left([W^\sigma, \tau^\emptyset_{t-s}(a(f))] \right)
\]

- **\(F^\Lambda_t(f, g) \leq \sum_{n \in \mathbb{N}} a_n(t, f, g) \)** with

\[
a_n(t, f, g) = C^n_\sigma \int_0^t dt_1 \cdots \int_0^{t_{n-1}} dt_n \int_{\mathbb{R}^d} dx_1 \cdots \int_{\mathbb{R}^d} dx_n K_{t-t_1}(f, x_1) \times K_{t_1-t_2}(\varphi_{x_1}^\sigma, x_2) \cdots K_{t_{n-1}-t_n}(\varphi_{x_{n-1}}^\sigma, x_n) |\langle e^{-it_1 H_1} \varphi_{x_1}^\sigma, g \rangle|
\]

and \(K_t(f, x) = \|W\|_1 |\langle e^{-itH_1} f, \varphi_x^\sigma \rangle| + 2 \left(|W| * |\langle e^{-itH_1} f, \varphi_x^\sigma \rangle| \right)(x) \)

- **For our proof it is essential to bound**

\[
|\langle e^{-itH_1} \varphi_y^\sigma, g \rangle| \leq ???
\]

for one-particle operator \(H_1 = -\Delta + V \). Gaussian important here.
One-particle Lieb-Robinson bounds on \mathbb{R}^d

- Estimate

$$\left| \left(e^{-it(-\Delta+V)} \varphi_{y}^{\sigma} \right)(x) \right| \leq ??$$

- For $V = 0$:

$$\left| \left(e^{-it(-\Delta)} \varphi_{y}^{1} \right)(x) \right| = \frac{1}{(2\pi)^{d/2}} \frac{e^{-\frac{|x-y|^2}{8t^2+2}}}{(4t^2+1)^{d/4}}$$

Theorem (One-particle Lieb-Robinson bounds, GNRS '20).

Let V be compactly supported in momentum space, i.e. $V(x) = \int_{B_M} d\mu(k) \, e^{-ik \cdot x}$. Then there exist constants $C_1, C_2, C_3 > 0$, such that for all $t \in \mathbb{R}$ and $x, y \in \mathbb{R}^d$

$$\left| e^{-it(-\Delta+V)} \varphi_{y}^{\sigma} (x) \right| \leq C_1 e^{C_2 |t| \ln |t|} e^{-C_3 \frac{|x-y|}{1+t^2}}$$
Theorem (One-particle Lieb-Robinson bounds, GNRS ’20).

Let V be compactly supported in momentum space, i.e. $V(x) = \int_{B_M} d\mu(k) e^{-ik \cdot x}$. Then there exist constants $C_1, C_2, C_3 > 0$, such that for all $t \in \mathbb{R}$ and $x, y \in \mathbb{R}^d$

$$|e^{-it(\Delta + V)} \varphi_x^\sigma| \leq C_1 e^{C_2 |t| \ln |t|} e^{-C_3 \frac{|x-y|}{1+t^2}}$$

- No quadratic decay.
- In the discrete case independently of $V \in l^\infty(\mathbb{Z}^d)$

$$|(e^{-it(-\Delta_0 + V)} \delta_n)(m)| \leq e^{D_1 t - D_2 |n-m|}$$

Exercise in [AW17].

- Bound independent of $V \in L^\infty(\mathbb{R}^d)$? Does bound hold for all $V \in L^\infty(\mathbb{R}^d)$? Other interesting cases are harmonic oscillator or constant magnetic field. Remember we want spectral gap.
Idea proof: One-particle Lieb–Robinson bounds

Let \(H_0 = -\Delta \) and \(H_1 = -\Delta + V \).

- Use Dyson series

\[
e^{-itH_1} = e^{-itH_0} + (-i)^n \sum_{n=1}^{\infty} \int_0^t dt_n \cdots \int_0^t dt_1 \\
\times e^{-i(t-t_n)H_0}Ve^{-i(t_n-t_{n-1})H_0}V \cdots Ve^{it_1H_0}
\]

which follows from Duhamel’s formula

\[
e^{-isH_1}e^{-i(t-s)H_0} \bigg|_{s=0}^{s=t} = i \int_0^t ds e^{-isH_1}Ve^{-i(t-s)H_0}
\]

- Write \(V(x) = \int_{B_M} d\mu(k) e^{-ik \cdot x} \)

\[
\int_{B_M} d\mu(k_1) \cdots \int_{B_M} d\mu(k_n) \int_0^t dt_n \cdots \int_0^t dt_1 \\
\left(e^{-i(t-t_n)H_0} e^{-ik_1 x_1} e^{-i(t_n-t_{n-1})H_0} e^{-ik_2 x_2} \cdots e^{-ik_n x_n} e^{it_1H_0} \varphi_y \right)(x)
\]

- Going to momentum space the latter can be computed explicitly
\[
\frac{e^{-\frac{\sigma^2}{8t^2 + 2\sigma^4}}} \left| (x-y) - 2 \sum_{l=0}^{n} (t_{l+1} - t_{l}) \sum_{j=1}^{l} k_j \right|^2}{(4t^2 + \sigma^4)^{d/4}}
\]

▶ We continue

\[
\frac{e^{-\frac{\sigma^2}{8t^2 + 2\sigma^4}}} \left| (x-y) - 2 \sum_{l=0}^{n} (t_{l+1} - t_{l}) \sum_{j=1}^{l} k_j \right|^2}{(4t^2 + \sigma^4)^{d/4}} \leq C_{t,d} e^{-C(|x-y|-Mnt)^2}
\]

▶ Estimate

\[
\left| \left(\sum_{n=1}^{\infty} \int_{0}^{t} dt_{n} \cdots \int_{0}^{t_2} dt_{1} e^{-i(t-t_n)H_0} V \cdots V e^{it_1H_0} \varphi^\sigma \right) (x) \right|
\]

\[
\leq \sum_{n \in \mathbb{N}} \frac{\mu(\mathbb{R})^n t^n}{n!} C_{t,d} e^{-C(|x-y|-Mnt)^2}
\]

▶ Analyze series and get result for one-particle.
Proof many-body LR-bound:

\[K_t(\varphi_y, x) = \|W\|_1 |\langle e^{-itH_1} \varphi^\sigma_y, \varphi^\sigma_x \rangle| + 2 \left(|W| \ast |\langle e^{-itH_1} \varphi^\sigma_y, \varphi^\sigma_{(\cdot)} \rangle| \right)(x) \]

- Insert one-particle bound in many-body bound ...

\[|K_t(\varphi_y, x)| \leq Ce^{t\ln t} e^{-ct|x-y|} \]

- End up with lots of convolution operators ...
- Take Fourier transform ...
- We also need estimates on modified Bessel functions ...
Open problems

\[H_{\Lambda}^\sigma = d\Gamma(-\Delta + V) + \lambda \int_{\Lambda} \int_{\Lambda} dx \, dy \, W(x - y) a^*(\varphi^\sigma_y) a^*(\varphi^\sigma_y) a(\varphi^\sigma_y) a(\varphi^\sigma_x) \]

Let \(V \) be periodic such that \(\text{spec}(-\Delta + V) \) has gap. Choose Fermi energy in this gap. GNS Hamiltonian of \(d\Gamma(-\Delta + V - E) \) has a gap above its ground-state. Does the gap stay open for \(\lambda \) small independently of \(\Lambda \). Known for interacting fermions on lattice, see e.g. de Roeck-Salmhofer ’17.

Show one particle Lieb-Robinson bounds for arbitrary \(V \in L^\infty(\mathbb{R}^d) \) or \(V \) harmonic oscillator or in a constant magnetic field

\[\left| \left(e^{-it(-\Delta+V)} \varphi^\sigma_y \right)(x) \right| \leq C_1 e^{\mathcal{P}(t)} e^{-C_2|x-y|} \]

for some polynomial \(\mathcal{P} \).
From such a bound the many-body bound follows rather directly.
Thank you for your attention!

References

[1] M. Gebert, B. Nachtergaele, J. Reschke and R. Sims
Lieb-Robinson bounds and strongly continuous dynamics for a class of many-body fermion systems in \mathbb{R}^d. arXiv:1912.12552