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cut-gen-er-at-ing-func-tion-o-1o-gy noun
1. the study of problem-independent functions that map coefficients of

constraint systems of mixed integer optimization problems to
coefficients of valid inequalities.

2. the study of spaces of such functions.

First known use:

o cut-generating functions:
Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick, Mathematics of
Operations Research, 2015

e cutgeneratingfunctionologist:
Hong, Koppe, Zhou, Proc. ICMS 2016



A very brief history of cutting planes
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for discrete optimization

1954: Dantzig, Fulkerson, Johnson:
“Large-scale” TSP with LP + cuts

1958-1965: Gomory:
General-purpose cutting planes

1970s: Nemhauser, Padberg, Chvatal,
Trotter, Balas, Wolsey:
Polyhedral combinatorics

1979-1980s: Grotschel, Padberg,
Pulleyblank, Cornuéjols, Naddef:
Major breakthroughs on TSP using cuts

1980s-1990s: ...
Polyhedral combinatorics cottage industry

1995—: Balas, Ceria, Cornuéjols, Natraj
Revival of Gomory cuts

2020s: ?7
Next-generation, multi-row, multi-cut
cutting plane systems (7)



Gomory’s paper on the corner polyhedron

AR ALGEBRA AND ITS APPLICATIONS 451

Some Polyhedra Related to Combinatorial Problems

RALPH E. GOMORY*"
IBM, T. . Watson Research Center
Yorhtown Heights, New York

Communicated by Alan J. Hoffman

ABSTRACT

Gomory’s group relaxation
it o g BogeoRLy i B ot o (F ER\Z 1 € JZ):
&

s are cutti

‘planes for the general inte bl

coincide with the convex hull of the integer points satisfying a linear programmir

problem. These polyhedra are next shown to be cross sections of more symmetric
higher dimensional polyhedra whose properties are then studied. Some algorithms
for integer programming, based on a knowledge of the polyhedra, are outlined

N
x=—f+ E rixj, X €Z, xy € L.
INTRODUCTION JEN
It is well known that a great variety of combinatorial problems can

be written as integer programming problems, that is, as systems of
inequalities

A'x' < b, X =0, integer, 1)

together with a linear function ¢’- ' to be maximized. In (1), A" is an
m X n integer matrix, ¥’ an integer n-vector, and b an integer m-vector.

* This work was supported in part by the Offi
Nonr 3775-(00), NR 047040,

of Naval Research under contract

Part of this paper was written while the author was a visiting member of the
Courant Institute of Mathematics, New Vork University.

Linear Algebra and Its Applications 2(1969)
Copyright © 1969 by American Elsevier Publishing Company, Inc




From Gomory to Gomory—Johnson
Take Gomory’s group relaxation (f € R\ Z, r; € %Z):

x=—f+> rx, x€Z xy€Ll.

JEN
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The Gomory—Johnson papers

Mathematical Programming 3 (1972) 23~85. North-Holland Publishing Company

SOME CONTINUOUS FUNCTIONS RELATED
TO CORNER POLYHEDRA

Ralph E. GOMORY and Ellis L. JOHNSON
IBM Research, Yorktown Heights, N.Y., US.A.

Received 6 April 1971
Revised manuscript received 16 December 1971

Previous work on Gomory’s corner polyhedra is extended t0 generate valid inequalities for
any mixed integer program. The theory of a corresponding asymptotic problem is developed.
It is shown how faces previously generated and those given here can be used o give valid in-
cqualities for any integer program.

0. Introduction

o1

Inequalities based on the integer nature of some or all of the variables
are useful in almost any algorithm for integer programming. They can
furnish cut offs for branch and bound or truncated enumeration meth-
ods, or cutting planes for cutting plane methods. In this paper we des-
cribe methods for producing such inequalities and develop some under-
lying theory.

We will attempt to outline our general approach, taking the pure
integer case first and then the general mixed integer problem

Consider a pure integer problem

Ax=b, x20 [0}
in which 4 is anm X (m +n) matrix, x is an integer m + n vector, and b
an m-vector. If we consider a basis B (in most applications this will be

an optimal basis) we can write (1) as

Bxy +Nxy =b, x; 20, xy >0,

Mathematical Programming 3 (1972) 359~369. North-Holland Publishing Company

March 1972

ceived 11 October 1972

group grows.

1. Review of the problems

This paper follows a previous paper [4] but will be self-contained
except for proofs of some theorems from [4].

1.1. The problems P(U, uy) and P* (U, uy)

Let / be the group formed by the real numbers on the interval [0, 1]
with addition modulo 1. Let U be a subset of / and let # be an integer-
valued function on U such that (i) #(u) 2 0 for all u € U, and (ii) ¢ has a
finite support, that is t(u)> 0 only for a finite subset U, of U.

We say that the function ¢ is a solution to the problem P(U, ), for
ug € IO}, if

T utw)=up. (.
uev




Cut-generating functions: valid, minimal, extreme, facet

Take Gomory’s group relaxation (f € R\ Z, r; € R):
x:—f—&-z:rjx,-7 xeZ, xyeZl.
jen

Valid inequalities come from valid (cut-generating) functions
7m: R — Ry in the Gomory—Johnson model R¢(R/Z):

> ()X =1

JEN

The (pointwise) minimal valid functions for R¢(R/Z) are classified by a theorem by
Gomory—Johnson (1972):

Q 7 is periodic modulo 1, w(r) =0 for r € Z,
@ 7 is subadditive: Arn(x,y):=n(x)+w(y) —7(x+y)>0forx,y € R,
@ 7 is symmetric: 7(x) + 7(f —x) =1 for x € R.

A minimal function 7 is extreme if it cannot be written as a convex
combination of two other valid (minimal) functions for R¢(R/Z):

1 1
m#£ 51+ 572, T T, T



A hierarchy of functions: valid, minimal, extreme / facet

not minimal m

gomory_fractional

A= i
B

11_strong_fractional



https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gomory_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+california_ip(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22

Recent notable papers in pure cutgeneratingfunctionology

o Conforti, Cornuejols, Daniilidis, Lemarechal, Malick. Cut-generating functions and
S-free sets, Mathematics of Operations Research, 2015.

$5Y rx, xweRY.  (MLFCB: S =Z¥)
JEN

@ Yildiz and Cornuejols, Cut-generating functions for integer variables,
Mathematics of Operations Research, 2016.

S>3 Z rixi, xy€Z. (Gomory—Johnson: S = Z¥)
JEN
o Basu, Hildebrand, Molinaro, Minimal cut-generating functions are nearly
extreme, Mathematical Programming, 2018.

@ Di Summa, Piecewise smooth extreme functions are piecewise linear,
Mathematical Programming, 2018.

@ Basu, Conforti, Di Summa, Zambelli, Optimal cutting planes from the group
relaxations, Mathematics of Operations Research, 2019.

o Kilince-Karzan, On Minimal Valid Inequalities for Mixed Integer Conic
Programs. Mathematics of Operations Research, 2016.



An electronic compendium of extreme functions

K6.—Zhou (2014-); available at
http://mkoeppe.github.io/cutgeneratingfunctionology/doc/html/extreme_functions.html

AN et A

gmic gj_2_slope gj_2_slope_ dg_2_step_mir kf_n_step_mir beez_
repeat counterexample

gj_forward_3_ drlm_backward_3_ dr_projected_ bhk_irrational chen_4_slope hildebrand_5_

slope slope sequential_ slope_22_1

merge_3_slope

SN SN

kzh_7_slope_1 kzh_28_slope_1 bedsp_arbitrary_ 11_strong_ dg_2_step_mir_ drlm_2_slope_
slope fractional limit limit
e SN .
drlm_3_slope_ rlm_dpli_ hildebrand_2_ zhou_two_sided_ kzh_minimal_ beds_
limit extreme_3a sided_discont_2_ discontinuous_ has_only_crazy_ discontinuous_
slope_1 cannot_assume_ perturbation_1 everywhere

any_continuity


http://mkoeppe.github.io/cutgeneratingfunctionology/doc/html/extreme_functions.html
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kf_n_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bccz_counterexample(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bccz_counterexample(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_5_slope_22_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_5_slope_22_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_7_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_28_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcdsp_arbitrary_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcdsp_arbitrary_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+rlm_dpl1_extreme_3a(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+rlm_dpl1_extreme_3a(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_minimal_has_only_crazy_perturbation_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_minimal_has_only_crazy_perturbation_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_minimal_has_only_crazy_perturbation_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcds_discontinuous_everywhere(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcds_discontinuous_everywhere(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcds_discontinuous_everywhere(%22

Cutting plane theorems from the literature

7 = drlm_backward_3_slope

Let f € (0,1) and b € R such that f < b < L. Define 7: R/Z — R as
x ifO<x<f
LHf—b)(x—f) -
() = 14 Ul i F<x<b
oF ifb<x<14+f—b
(1+f—b)(x—1) .
S T ifl+f—b<x<1

f b 1+fb 1

Figure: drlm_backward_3_slope

Theorem (Dey—Richard—-Li-Miller, 2010; in this form, Képpe—Zhou, 2014)

The function 7 =drlm_backward_3_slope is an extreme function for R¢(R/Z),
if the parameters satisfy that 0 < f < b < 1%4“.



https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22

Cutting plane theorems from the literature

7 = chen_4_slope

Let f € (0,1), st > 0,57 <0and A1, A2 €R.
Define the periodic, piecewise linear function 7: R/Z — R as:

E 1 E
S ! .

5N A S

L L I L L !

d a b v f dd cd 1

Figure: chen_4_slope

/_ M(1-=s"f) _\f _ Xo(1=F) 7 Ao(1—st(1=1))
Whereafm,aff,cfl—#,cfl—w

and b=f—a, b =f—-a ,d=1+f—c,d =1+f—-C¢.

The function © = chen_4_slope is an extreme function for R¢(R/Z), if the
parameters f, A\1, A2, s" and s~ satisfy that

1 + 1 - 1
f257 S 2?7 S Sf,]_:

. g . o
0 < A1 < min{}, ﬁ}, f— X <X <min{}, W}



https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22

Proofs of cutting plane theorems from the literature

7 = gj_forward_3_slope

Theorem 8. Three Slope Family Theorem: If 7 is constructed according to Construc-
tion 3, and if Ay < 1/2and 0 < A, < 1, then 7 is a facet.

360

R.E. Gomory, E.L. Johnson

Proof: (A) Mini

lity and Subadditivity.

Subadditivity: Referring to the Subadditivity Checking Theorem, the only convex end-
points in 77 are the local minima at A and By. So the Subadditivity Checking Theorem
applied here tells us that we need only check

d a symmetric 7

ity for the three ing cases.

Case I: p1is A a
Lemma this cann¢

Case 2: pyis B ¢
A)+ (B + A) —
(B—A)+2(1 -
multiple of v so t|
inward from B —
condition A < 1
Case 3: p1is By at
2uu—A—Avy =
Lemma this can n

Proof (B): Uniqueness of the Solution.
ing interval on G, u[O, (1/2)w;] as both the interval U and as the interval V in the D

2r any 7*(u) that satisfies all the equa-
aent [0, (1/2)w;]. Take the correspond-

Interval Lemma. |
(v, w(v)) on the s
W) + () =
a straight line segi
We next consi
but, we now take [
u[AA, R). Again,
also have 7*(u)
the Interval Lemm
Furthermore, fron|
U =ul0,(1/2)
Continuing to
and u[R, 02], 7*
The slope s3
descends from 1
condition, 7* is ne
Once s; is de
determined by the
tion applies to bot}
as well. So 7* =

Since A, was a1
facat

Because A < %. there is a segment with A as its left end point and P1 — A as the
right endpoint. Applying the Interval Lemma to the segments U = [A, P1 — A],V =
[P1—A,Plland U + V = [P1,2P1 — A] = [P1, B], we conclude that, since the
segments cover [A, B] and * is linear with the same slope in each one, and is required
to be continuous, 77* must be linear with a single slope over [A, B].

It remains to show that the slope of 7* is the same as the slope of 7 on [A, B].
However [A, B] was constructed on the segment [ O, P1] passing through the origin O.
Therefore 7 satisfies both 7(2A) = 27 (A) and 2w (P1) = 7 (R). These are two relations
that 7 * must also satisfy. However 7*(2A) = 27*(A) implies that on u[A, B] the linear
7r* is part of a line that passes through the origin. In addition 7*(P1) = (%)ﬂ*(R) = %,
so 7* passes through P1. However, in the vertical strip between O and R and containing
P1, there is only one line passing through O and P1. So 7 and 7* must have the same
slope.

‘We have now dealt with the segment having the third slope, what remains are the
usual segments with slope s* and s~. These are easily dealt with using the Interval
Lemma as we did on the discussion of Construction 1.

‘We now know that the set E (r) of all equalities has no solution other than 7 itself.
If we can show that 7 is subadditive and minimal, we can apply the Facet Theorem.



https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22

Producing cutting-plane theorems in quantity

... for next-generation, ML/Al-based cutting plane algorithms. ..

The plan:

100,000 postdoctoral positions are available in theoretical, applied and
computational optimization for applications in cutgeneratingfunctionology.

A competitive salary based on the applicant’s qualifications and experience
will be offered.

The positions are available immediately and will be filled as soon as suitable
candidates are identified. The candidate should have received (or be about to
receive) a doctoral degree in optimization, computational mathematics,
operations research, or computer science.

Applicants should send a vita, bibliography with relevant reprints, and a
brief description of research experience and interests to

Professor Matthias Koeppe, Department of Mathematics, University of
California, Davis, CA 95616 U.S.A. email: mkoeppe@math.ucdavis.edu

Candidates should indicate their availability for massively parallel
interviewing at the INFORMS Career Center.



Algorithmic and computational cutgeneratingfunctionology |
K6.—Zhou, New computer-based search strategies for extreme functions of the Gomory—Johnson infinite group
problem, Mathematical Programming Computation, 2017.

Computer-based search for extreme functions: Candidates are interpolations of extreme

functions on the ; grid.
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Enabling technology: Polyhedral vertex enumeration

TABLE 1. Efficiency of various vertex enumeration codes without preprocessing

Running time (s)

g dimension inequalities vertices PPL Porta cddlib Irslib Panda  Normaliz
5 1 21 2 0.001 0.018 0.009 0.008 0.026 0.003
7 2 36 4 0.001 0.012 0.011 0.005 0.026 0.004
9 3 55 7 0.002 0.016 0.018 0.004 0.065 0.005

11 4 78 18 0.003 0.016 0.031 0.009 23 0.007

13 5 105 40 0.007 0.018 0.11 0.021 4604 0.011

15 6 136 68 0.017 0.037 0.21 0.14 0.017

17 7 171 251 0.14 0.20 1.2 0.71 0.047

19 8 210 726 0.91 1.6 5.0 2.3 0.16

21 9 253 1661 6.6 13 24 13 0.67

23¢ 10 300 7188 166 558 785 4 4.9

25 11 351 23214 1854 10048 12129 471 21

26 12 378 54010 2167 62

27 12 406 68216 89

28 13 435 195229 326

29 13 465 317145 644

30 14 496 576696 1693

31 14 528 1216944 3411




Algorithmic and computational cutgeneratingfunctionology Il

The Equivariant Perturbation project (2012-):

Given a (piecewise linear) minimal function 7, compute its space of effective
perturbations:

ﬂ”:{%:RkHR|He>OS.t. nE = ke minimal}.

(m is extreme iff [1™ = {0}.)

@ Basu, Hildebrand, Ké., Equivariant perturbation in Gomory and Johnson’s

infinite group problem. I. The one-dimensional case. Mathematics of Operations
Research, 2014.

o Hong, Ko., Zhou, Equivariant perturbation in Gomory and Johnson’s infinite
group problem. V. Software for the continuous and discontinuous 1-row case.
Optimization Methods and Software, 2018.

o Hildebrand, K6., Zhou, Equivariant perturbation in Gomory and Johnson’s
infinite group problem. VII. Inverse semigroup theory, closures, decomposition
of perturbations, arXiv e-print, 2018



Effective perturbations of minimal functions

Given a minimal function 7, what properties does an effective perturbation 7 € [17
necessarily have?

For a (possibly discontinuous) piecewise linear function 7 (on partition P), define a
polyhedral complex AP on R x R with faces

F(I,J,K)={(x,y) ERxR|x€l, yeJ, x+y€eK}

where I, J, K are breakpoints or subintervals of P.
- o subadditivity slack

An(x,y) = m(x) +7(y) = m(x +y)

is affine-linear on relint(F) for F € AP.

@ By convexity, because

+

T =7+ en
m subadditive,
T =T —€n

we have An(x,y) = [0l = A#(x,y) = 0.



What is ...

an equivariant perturbation?

Basu—Hildebrand—Kao.: Equivariant Perturbation |; Hildebrand—K6.—Zhou: Equivariant Perturbation VII

Group actions — the standard (1
language of symmetries

A group I, generated by finitely
many translations and point
reflections, acts on the space RX.
A function 7: RK 5 R is ...

@ invariant if:
(v * x) = 7(x)
@ equivariant if:

iy * x) = 7 - 7(x)

T = equiv7_example_xyz_2()

}_Aﬁ ?

}—~—/~\——\/———>R:ﬁ’{—
— € Mg,
| € g,
| € g,
B



What is ... an equivariant perturbation (under inverse semigroup actions)?
Hildebrand—K®6.—Zhou: Equivariant Perturbation VII

T = equiv7_minimal_2_covered_-2_uncovered().

Bl 5 i

odls 220 oy !IL 1
w5 T TRD TN

| A A

ot s e sy s 1
Tigao Toho o oy 47

Inverse semigroup actions — to model partial symmetries

I" an inverse semigroup of partial maps (translations and reflections)




Extremality proof by software

Let 7 = gj_forward_3_slope(f, A1, X2),
with f =4/5, Ay =4/9 and \» = 2/3.
The program shows in < 1 second that
7 is an extreme function.

=

sage: h = gj_forward_3_slope(f=4/5, lambda_1=4/9, lambda_2=2/3) DEBUG: 2016-05-15 05:20:44,204 The covered components are [[<Int(8/45,
1 INFO: 2016-05-15 ©! 40,100 Conditions for extremality are satisfied. | 28/45)>], [<Int(@, 1/9)>, <Int(31/45, 4/5)>], [<Int(1/9, 8/45)>, <Int(2
| INFO: 2016-05-15 05:20:40,101 Rational case. 8/45, 31/45)>, <Int(4/5, 1)>]].

| sage: extremality test(h)

polyhedral
complex

pi(o) = @
159 pi 15 subadditive.

T Computing maximal additive faces...
INFO: 2016-05-15 05 20:44,172 Computing maximal additive faces... done
fDEEUG: 2016-05-15 05:20:44,179 Step 1: Consider the 2d additive <Face (
| [8/45, 4/9], [8/45, 4/9], [16/45, 28/45])>.

[<Int(8/45 28/45)>] is directly covered.

DEBUG 2016-05-15 05:20:44,182 Step 2: Consider the 2d additive <Face (
[0, 1/9]1, [31/45, 4/51, [31/45, 4/5])>.

| [<Int(@, 1/9)>, <Int(31/45, 4/5)>] is directly covered.

| DEBUG: 2016-05-15 05:20:44,185 Step 3: Consider the 2d additive <Face (
[1/9, 8/45], [28/45, 31/45], [4/5, 13/15]1)>.

| [<Int(1/9, 8/45)>, <Int(28/45, 31/45)>, <Int(4/5, 13/15)>] is directly
covered.

{ DEBUG: 2016-05-15 05:20:44,191 Step 4: Consider the 2d additive <Face (
| [4/5, 11, [475, 11, [9/5, 2]1)>.

| [<Int(4/5, 1)>] is directly covered.

DEBUG: 2016-05-15 05:20:44,191 We obtain a
1/9, 8/45)>, <Int(28/45, 31/45)>, <Int(4/5
! onents merged in.

INFO: 2016-05-15 05:20:44,
d 3 covered components...
’INFD 2016-05-15 05:20:44,
ves and 3 covered c
| INFO: 2016-05-15 05: 20 44,204 AL intervals are covered (or connected-t
o-covered). 3 components.

covered component [<Int(
>], with overlapping comp

moves an

functional equations,
inverse semigroups

rected mo

Next: Extend this to parametric families

DEBUG: 2016-05-15 05:20:44,316 Let v in R*3.

The i-th entry of v represents the slope parameter on the i-th componen
t of [[<Int(8/45, 28/45)>], [<Int(@, 1/9)>, <Int(31/45, 4/5)>], [<Int(1
/9, 8/45)>, <Int(28/45, 31/45)>, <Int(4/5, 1)>]1.

Set up the symbolic function sym: [0,1] —> R*3, so that pert(x) = sym(x
) * V.

The symbolic function sym is <FastPiecewise with 6 parts,

(0, 1/9) <FastLinearFunction ((@,1,0))%x>

(1/9, 8/45) <FastLin . . . -1/9))>
(8/45, 28/45) <FastLinsd PIECEWISE linear 1/9,-1/15))>
(28745, 31/45) <Fa! H 9,-5/9))>
(51745, 475)  <rastLind PErturbation ansatz fg/is/s))-
(475, 1) <FastLin '9,-2/3))>>.

DEBUG: 2016-05-15 05 4,318 Condition pert(f) =
(4/9, 2/9, 2/15) * v
DEBUG: 2016-05-15 05:
(4/9, 2/9, 1/3) * v = 0.

DEBUG: 2016-05-15 05:20:44,319 Condition pert(8/45) + pert(4/9) = pert(
28/45) gives the equation
(-8/45, 1/9, 1/15) * v = 0.

] glves the equation

4,318 Condition pert(1) = @ gives the equation

DEBUG: 2016-05-15 05:20:44,323 Solve the lid |inear lations:
[ 4/9 2/9 2/15]

[ 49 2/9 1/3] algebra

[-8/45 1/9 1/15] * v = 0.

INFO: 2016-05-15 @5:20:44,333 Finite dimensional test: Solution space h
as dimension 0.

INFO: 2016-05-15 05:20:44,333 Thus the function is extreme.

True

sage: I
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Algorithmic and computational cutgeneratingfunctionology Il

Transform automatic extremality test to a theorem discovery and proof technique

... by metaprogramming

Instead of explaining extremality test... an easier example:

Anti-definition

A matrix A is positive definite if ... 777 ...




Metaprogramming analysis of a grey-box program

When is the matrix A = [; }1/] positive definite? We have no idea, but we have a
i
trustworthy, real algebraic Python program for testing it for given x and y.

A.is positive definite()

We can’t read the source code to understand what it does, but can
apply metaprogramming techniques to analyze the program.

@ Testpoint (x1,y1) = (—1,1)
A.is_positive_definite() is False
in the proof cell x < 0 (side effect).

e Testpoint (x2,y2) = (3,1)
A.is_positive_definite() is False
in the proof cell 0 < x < 4y°.

o Testpoint (x3,y3) = (%,1)

A.is_positive_definite() is True

in the proof cell x > 4y?.



Our metaprogramming technique SPAM
Simplified Python code

class ParametricRealFieldElement (FieldElement) :

def

def

_add_(self, other):

return ParametricRealFieldElement(self._val + other._val,
self._sym + other._sym,
parent=self.parent())

__cmp__(left, right): # Py2
result = cmp(left._val, right._val)
if result ==

left.parent() .record_to_eq(left.sym() - right.sym())
elif result == -1:

left.parent() .record_to_lt(left.sym() - right.sym())
elif result ==

left.parent () .record_to_lt(right.sym() - left.sym())
return result



Automated proof for drlm_backward_3_slope

by SPAM* = SPAM + wall crossing

Figure: The cell complexes of drlm_backward_3_slope, showing the parameters (f, bkpt).

Cell colors: constructible, but not minimal , _ -
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Automated proof for gj_forward_3_slope

Figure: The cell complex of gj_forward_3_slope, showing the parameters (A1, A2) for fixed
f=4/5.

Cell colors: constructible, but not minimal , _ -


https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22

Automated proof for gj_forward_3_slope

0.8

0.6

0.2

Figure: The cell complex of the parametric family gj_forward_3_slope. Left, showing the plane
of parameters (f, A1) for fixed A, = 2/3; Right, showing the plane of parameters (f, A;) for fixed

A1 = 4/9. Cell colors: constructible, but not minimal , _, -
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Correction for chen_4_slope

Chen'’s theorem about his chen_4_slope family is incorrect
(conditions for extremality neither necessary nor sufficient).

- constructible
i —claimed_extreme

0.8]

0.6

0.4

0.2]

Figure: The extreme region of chen_4_slope claimed in the literature is incorrect. Parameters

(A1, X2); fixed f =7/10, sT =2, s~ = —4. Left, the _ from Chen's theorem

within the region of constructibility . Right, the cell complex computed by our implementation.

Cell colors: constructible, but not minimal , _ -
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Correction for chen_4_slope

Theorem (Ka., Zhou, & the computer, 2019)

Let M1, X2 € [0,1). Let w: R/Z — R be the function chen_4_slope, where f = 7/10,
sT =2 and s~ = —4. Then 1 is an extreme function for R¢(R,Z), if and only if the
parameters A1 and X\, satisfy that

[y

M<S, X< (sTF—1)1—s M < (sT —s )\, and

57
STA-FH+)(s (F-1) - < (s" —s ).

N =
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Computer-assisted discovery of new theorems

@ Take a function from computer-based search for extreme functions (on a grid)
Ké., Zhou (2015)
@ Invent some parametrization:
def param_3_slope_1(f=6/19, a=1/19, b=5/19, v=8/15):

55

&=

@ Run minimality test:
sage: K.<f,a,b,v>=ParametricRealField([6/19,1/19,5/19,8/15])
sage: h = param_3_slope_1(f,a,b,v)
sage: minimality_test(h)
True
sage: K._eq_factor
{-£"2xv + 3*fxb*v + £°2 + f*xa - 3*f*b - 3*axb - f*v + b}
@ New equation! Eliminate v.



Computer-assisted discovery of new theorems

Revise definition:

def kzh_3_slope_param_extreme_1(f=6/19, a=1/19, b=5/19, field=None,
conditioncheck=True) :

v = (fxf+f*a-3*fxb-3xa*b+b)/(f*f+f-3*fx*b)

bkpts = [0, f, f+a, (1+f-b)/2, (1+f+b)/2, 1-a, 1]

values = [0, 1, v, (£-b)/2/f, (£+b)/2/f, 1-v, 0]

return piecewise_function_from_breakpoints_and_values
(bkpts, values, field=field)

Rerun the algorithm — full-dimensional cell

3*xf + 4¥a - b - 1< 0 -a<o0
-f°2 - f*a + 3%f*b + 3*%a*b - b < 0 -f+b<O0
fxa - 3%xaxb - f + b < 0 -f -3*b + 1 <0

-f"2%a + 3xfxaxb - 3*%axb - f + b < 0

Compute the complex by wall-crossing search



Computer-assisted discovery of new theorems
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Computer-assisted discovery of new theorems

Theorem (K6., Zhou, & the computer, ISCO 2016)

Let f € (0,1) and a, b € R such that
0<a 0<b<fand3f+4a—b—-1<0.

The periodic, piecewise linear kzh_3_slope_param_exztreme_1 function w: R/Z — R
defined as follows is extreme. The function 7 has breakpoints at

1+f—b 1+f+0b
2 ’ 2
The values at breakpoints are given by 7(0) = (1) =0, n(f +a)=1—n(l—a) =v

14f—bY\ _ 1 _ _(Ll+f+by _ f—b _ f24fa—3fb—3abtb
and 7(=5=2) =1 —n(H57) = 57, where v = 77252

0,f,f + a,

,1—a, 1.
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Revisiting the minimality test
K6., Wang, 2019

Prove minimality without visiting all vertices of the polyhedral complex AP?

1

... by spatial branch and bound, minimizing the subadditivity slack Ax...



Example: m = kzh_7_slope_1(), piecewise constant bounds

White regions: non-leaf
Yellow regions (leaf): Pruned by indivisible regions
Red regions (leaf): Pruned by bounding using estimators
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Performance profile
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Figure: Performance profiles of 5 algorithms. Three spatial B&B algorithms all use constant
bounds with different node selection strategies. The CPLEX approach uses Vielma's
disaggregated logarithmic (DLog) formulation, which contains O(logzn) binary vairables.



Conclusion

“These new theorems are entirely unremarkable;
the plan for the future is to make up for it
by sheer quantity.”

https://github.com/mkoeppe/cutgeneratingfunctionology


https://github.com/mkoeppe/cutgeneratingfunctionology

SageMath (Python) package cutgeneratingfunctionology

https://github.com/mkoeppe/cutgeneratingfunctionology
Authors: Chun Yu Hong (2013), K6. (2013-), Yuan Zhou (2014-), Jiawei Wang
(2016-), contributing undergraduate programmers

EED + 0 s o0 ° Models:

o 1-row Gomory—Johnson model

e Gomory's finite (cyclic) group problem

@ superadditive lifting functions
@ classical, general dual-feasible functions

@ multi-row code under development

Functionality:

@ electronic compendium of functions

@ automatic extremality test (Basu-Hildebrand-Ka.,
Math. Oper. Res. 2014, Hong—K&6.—Zhou, ICMS
2016, Hildebrand—K&6.-Zhou, 2018+)

@ computer-based search for extreme functions
! (Ké.—Zhou, MPC 2016)

@ parametric analysis (K&.—Zhou, ISCO 2016)
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