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cut·gen·er·at·ing·func·tion·o·lo·gy noun

1. the study of problem-independent functions that map coefficients of
constraint systems of mixed integer optimization problems to
coefficients of valid inequalities.

2. the study of spaces of such functions.

First known use:

cut-generating functions:
Conforti, Cornuéjols, Daniilidis, Lemaréchal, Malick, Mathematics of
Operations Research, 2015

cutgeneratingfunctionologist:
Hong, Köppe, Zhou, Proc. ICMS 2016



A very brief history of cutting planes for discrete optimization

max c> x0

x1

x2

1954: Dantzig, Fulkerson, Johnson:
“Large-scale” TSP with LP + cuts

1958–1965: Gomory:
General-purpose cutting planes

1970s: Nemhauser, Padberg, Chvátal,
Trotter, Balas, Wolsey:
Polyhedral combinatorics

1979–1980s: Grötschel, Padberg,
Pulleyblank, Cornuéjols, Naddef:
Major breakthroughs on TSP using cuts

1980s–1990s: . . .
Polyhedral combinatorics cottage industry

1995–: Balas, Ceria, Cornuéjols, Natraj
Revival of Gomory cuts
...

2020s: ??
Next-generation, multi-row, multi-cut
cutting plane systems (?)



Gomory’s paper on the corner polyhedron

Gomory’s group relaxation
(f ∈ R \ Z, rj ∈ 1

q
Z):

x = −f +
∑
j∈N

rjxj , x ∈ Z, xN ∈ ZN
+.



From Gomory to Gomory–Johnson

Take Gomory’s group relaxation (f ∈ R \ Z, rj ∈ 1
q
Z):

x = −f +
∑
j∈N

rjxj , x ∈ Z, xN ∈ ZN
+.



The Gomory–Johnson papers

Mathematical Programming 3 (19 72) 23-85. North-Holland Publishing Company 

SOME CONTINUOUS FUNCTIONS RELATED 
TO CORNER POLYHEDRA 

Ralph E. GOMORY and Ellis L. JOHNSON 
IBM Research, Yorktown Heights, N.Y., U.S.A. 

Received 6 April 1971 
Revised manuscript received 16 December 1971 

Previous work on Gomory's corner polyhedra is extended to generate valid inequalities for 
any mixed integer program. The theory of a corresponding asymptotic problem is developed. 
It is shown how faces previously generated and those given here can be used to give valid in- 
equalities for any integer program. 

O. Introduction 

0 .1°  

Inequalities based on the integer nature of  some or all of  the variables 
are useful in almost any algorithm for integer programming. They can 
furnish cut offs for branch and bound or truncated enumeration meth- 
ods, or cutting planes for cutting plane methods.  In this paper we des- 
cribe methods for producing such inequalities and develop some under- 
lying theory. 

We will a t tempt to outline our general approach, taking the pure 
integer case first and then the general mixed integer problem. 

Consider a pure integer problem 

A x = b ,  x > _ O  (1) 

in which A is an rn × (rn + n) matrix, x is an integer rn + n vector, and b 
an m-vector. If  we consider a basis B (in most  applications this will be 
an optimal basis) we can write (1) as 

B x  B + N x  N = b , x B ~ 0 , x N > _ 0 ,  

Mathematical Programming 3 {1972) 359-389. North-Holland Publishing Company 

SOME CONTINUOUS FUNCTIONS 
RELATED TO CORNER POLYHEDRA, II 

Ralph E. GOMORY and Ellis L. JOHNSON 
IBM Watson Research Center, Yorktown Heights, iV. Y., 10598, U.S.A. 

Received 3 March 1972 
Revised manuscript received 11 October 1972 

The group problem on the unit interval is developed, with and without continuous variables. 
The connection with cutting planes, or valid inequalities, is reviewed. Certain desirable proper- 
ties of valid inequalities, such as minimality and extremality are developed, and the connection 
between valid inequalities for P(I, u 0) and P+(I, u 0) is developed. A class of functions is shown 
to give extreme valid inequalities for P+ (I, u0) and for certain subsets UofI. A method is used 
to generate such functions. These functions give faces of certain corner polyhedra. Other func- 
tions.which do not immediately give extreme valid inequalities are altered to construct a class of 
faces for certain corner polyhedra. This class of faces grows exponentially as the size of the 
group grows. 

1. Review of  the problems 

This paper follows a previous paper [4] but will be self-contained 
except for proofs of  some theorems from [4].  

1.1. The problems P(U, u0) and P+(U, u0) 

Let I be the group formed by the real numbers on the interval [0, 1 ] 
with addition modulo 1. Let U be a subset of  I and let t be an integer- 
valued function on U such that (i) t(u) >_ 0 for all u ~ U, and (ii) t has a 
finite support, that is t ( u ) >  0 only for a finite subset U t of  U.  

We say that the function t is a solution to the problem P(U, u 0), for 
u o ~ /~  {0~, if 

u t ( u ) = u  o . (1.1) 
u ~ U  
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Cut-generating functions: valid, minimal, extreme, facet
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Take Gomory’s group relaxation (f ∈ R \ Z, rj ∈ R):

x = −f +
∑
j∈N

rjxj , x ∈ Z, xN ∈ ZN
+.

Valid inequalities come from valid (cut-generating) functions
π : R→ R+ in the Gomory–Johnson model Rf (R/Z):∑

j∈N

π(rj)xj ≥ 1

The (pointwise) minimal valid functions for Rf (R/Z) are classified by a theorem by
Gomory–Johnson (1972):

1 π is periodic modulo 1, π(r) = 0 for r ∈ Z,

2 π is subadditive: ∆π(x , y) := π(x) + π(y)− π(x + y) ≥ 0 for x , y ∈ R,

3 π is symmetric: π(x) + π(f − x) = 1 for x ∈ R.

A minimal function π is extreme if it cannot be written as a convex
combination of two other valid (minimal) functions for Rf (R/Z):

π 6= 1
2
π1 + 1

2
π2, π 6= π1, π2



A hierarchy of functions: valid, minimal, extreme / facet

gomory_fractional california_ipnot minimal

gmic

ll_strong_fractional

minimal

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gomory_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+california_ip(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22


Recent notable papers in pure cutgeneratingfunctionology

Conforti, Cornuejols, Daniilidis, Lemarechal, Malick. Cut-generating functions and
S-free sets, Mathematics of Operations Research, 2015.

S 3
∑
j∈N

rjxj , xN ∈ RN
+. (MLFCB: S = Zk)

Yıldız and Cornuejols, Cut-generating functions for integer variables,
Mathematics of Operations Research, 2016.

S 3
∑
j∈N

rjxj , xN ∈ ZN
+. (Gomory–Johnson: S = Zk)

Basu, Hildebrand, Molinaro, Minimal cut-generating functions are nearly
extreme, Mathematical Programming, 2018.

Di Summa, Piecewise smooth extreme functions are piecewise linear,
Mathematical Programming, 2018.

Basu, Conforti, Di Summa, Zambelli, Optimal cutting planes from the group
relaxations, Mathematics of Operations Research, 2019.

Kılıncc-Karzan, On Minimal Valid Inequalities for Mixed Integer Conic
Programs. Mathematics of Operations Research, 2016.



An electronic compendium of extreme functions
Kö.–Zhou (2014–); available at
http://mkoeppe.github.io/cutgeneratingfunctionology/doc/html/extreme_functions.html

gmic gj_2_slope gj_2_slope_

repeat

dg_2_step_mir kf_n_step_mir bccz_

counterexample

gj_forward_3_

slope

drlm_backward_3_

slope

dr_projected_

sequential_

merge_3_slope

bhk_irrational chen_4_slope hildebrand_5_

slope_22_1

kzh_7_slope_1 kzh_28_slope_1 bcdsp_arbitrary_

slope

ll_strong_

fractional

dg_2_step_mir_

limit

drlm_2_slope_

limit

drlm_3_slope_

limit

rlm_dpl1_

extreme_3a

hildebrand_2_

sided_discont_2_

slope_1

zhou_two_sided_

discontinuous_

cannot_assume_

any_continuity

kzh_minimal_

has_only_crazy_

perturbation_1

bcds_

discontinuous_

everywhere

http://mkoeppe.github.io/cutgeneratingfunctionology/doc/html/extreme_functions.html
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gmic(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope_repeat(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kf_n_step_mir(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bccz_counterexample(%22
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https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dr_projected_sequential_merge_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bhk_irrational(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_5_slope_22_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_5_slope_22_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_7_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_28_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcdsp_arbitrary_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcdsp_arbitrary_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+ll_strong_fractional(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+dg_2_step_mir_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_2_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_3_slope_limit(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+rlm_dpl1_extreme_3a(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+rlm_dpl1_extreme_3a(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+hildebrand_2_sided_discont_2_slope_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+zhou_two_sided_discontinuous_cannot_assume_any_continuity(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_minimal_has_only_crazy_perturbation_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_minimal_has_only_crazy_perturbation_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_minimal_has_only_crazy_perturbation_1(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcds_discontinuous_everywhere(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcds_discontinuous_everywhere(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+bcds_discontinuous_everywhere(%22


Cutting plane theorems from the literature
π = drlm_backward_3_slope

Let f ∈ (0, 1) and b ∈ R such that f < b ≤ 1+f
2

. Define π : R/Z→ R as

π(x) =


x
f

if 0 ≤ x ≤ f

1 + (1+f−b)(x−f )
(1+f )(f−b)

if f ≤ x ≤ b
x

1+f
if b ≤ x ≤ 1 + f − b

(1+f−b)(x−1)
(1+f )(f−b)

if 1 + f − b ≤ x ≤ 1

f b 1 +f−b 1

1

Figure: drlm_backward_3_slope

Theorem (Dey–Richard–Li–Miller, 2010; in this form, Köppe–Zhou, 2014)

The function π =drlm_backward_3_slope is an extreme function for Rf (R/Z),
if the parameters satisfy that 0 < f < b ≤ 1+f

4
.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22


Cutting plane theorems from the literature
π = chen_4_slope

Let f ∈ (0, 1), s+ > 0, s− < 0 and λ1, λ2 ∈ R.
Define the periodic, piecewise linear function π : R/Z→ R as:

a′ a b b′ f d′ d c c′ 1

s+

s−
1
f

s−
s+

s−

s+ 1
f−1

s+ s−

Figure: chen_4_slope

where a′ = λ1(1−s−f )

2(s+−s−)
, a = λ1f

2
, c = 1− λ2(1−f )

2
, c ′ = 1− λ2(1−s+(1−f ))

2(s+−s−)

and b = f − a, b′ = f − a′ , d = 1 + f − c, d ′ = 1 + f − c ′.

Theorem (Chen, 2011, reworded)

The function π = chen_4_slope is an extreme function for Rf (R/Z), if the
parameters f , λ1, λ2, s

+ and s− satisfy that

f ≥ 1
2
, s+ ≥ 1

f
, s− ≤ 1

f−1
,

0 ≤ λ1 < min{ 1
2
, s+−s−

s+(1−s−f )
}, f − 1

s+ < λ2 < min{ 1
2
, s+−s−

s−(s+(f−1)−1)
}.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22


Proofs of cutting plane theorems from the literature

π = gj_forward_3_slope

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22


Producing cutting-plane theorems in quantity

. . . for next-generation, ML/AI-based cutting plane algorithms. . .

The plan:

100,000 postdoctoral positions are available in theoretical, applied and
computational optimization for applications in cutgeneratingfunctionology.

A competitive salary based on the applicant’s qualifications and experience
will be offered.

The positions are available immediately and will be filled as soon as suitable
candidates are identified. The candidate should have received (or be about to
receive) a doctoral degree in optimization, computational mathematics,
operations research, or computer science.

Applicants should send a vita, bibliography with relevant reprints, and a
brief description of research experience and interests to

Professor Matthias Koeppe, Department of Mathematics, University of
California, Davis, CA 95616 U.S.A. email: mkoeppe@math.ucdavis.edu

Candidates should indicate their availability for massively parallel
interviewing at the INFORMS Career Center.



Algorithmic and computational cutgeneratingfunctionology I
Kö.–Zhou, New computer-based search strategies for extreme functions of the Gomory–Johnson infinite group
problem, Mathematical Programming Computation, 2017.

Computer-based search for extreme functions: Candidates are interpolations of extreme
functions on the 1

q
grid.
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Enabling technology: Polyhedral vertex enumeration



Algorithmic and computational cutgeneratingfunctionology II

The Equivariant Perturbation project (2012–):

Given a (piecewise linear) minimal function π, compute its space of effective
perturbations:

Π̃π =
{
π̃ : Rk → R | ∃ ε > 0 s.t. π± = π ± επ̃ minimal

}
.

(π is extreme iff Π̃π = {0}.)

Basu, Hildebrand, Kö., Equivariant perturbation in Gomory and Johnson’s
infinite group problem. I. The one-dimensional case. Mathematics of Operations
Research, 2014.
...

Hong, Kö., Zhou, Equivariant perturbation in Gomory and Johnson’s infinite
group problem. V. Software for the continuous and discontinuous 1-row case.
Optimization Methods and Software, 2018.
...

Hildebrand, Kö., Zhou, Equivariant perturbation in Gomory and Johnson’s
infinite group problem. VII. Inverse semigroup theory, closures, decomposition
of perturbations, arXiv e-print, 2018



Effective perturbations of minimal functions

Given a minimal function π, what properties does an effective perturbation π̃ ∈ Π̃π

necessarily have?

For a (possibly discontinuous) piecewise linear function π (on partition P), define a
polyhedral complex ∆P on R× R with faces

F (I , J,K) = { (x , y) ∈ R× R | x ∈ I , y ∈ J, x + y ∈ K }
where I , J,K are breakpoints or subintervals of P.

f 1

f

1

subadditivity slack

∆π(x , y) = π(x) + π(y)− π(x + y)

is affine-linear on rel int(F ) for F ∈ ∆P.

Green faces have ∆π = 0 on rel int(F )

By convexity, because

π+ = π + επ̃
π
π− = π − επ̃

}
subadditive,

we have ∆π(x , y) = 0 ⇒ ∆π̃(x , y) = 0.



What is . . . an equivariant perturbation?
Basu–Hildebrand–Kö.: Equivariant Perturbation I; Hildebrand–Kö.–Zhou: Equivariant Perturbation VII

Group actions – the standard
language of symmetries

A group Γ, generated by finitely
many translations and point
reflections, acts on the space Rk .
A function π̃ : Rk → R is . . .

invariant if:

π̃(γ ∗ x) = π̃(x)

equivariant if:

π̃(γ ∗ x) = γ · π̃(x)

π = equiv7 example xyz 2()〈
,

,〉
R = Π̃π

>

∈ Π̃π
U1

∈ Π̃π
U2

∈ Π̃π
U3

∈ Π̃π
U4



What is . . . an equivariant perturbation (under inverse semigroup actions)?
Hildebrand–Kö.–Zhou: Equivariant Perturbation VII

π2 = equiv7 minimal 2 covered 2 uncovered().

Finite-dimensional perturbation:

Equivariant perturbations:

Inverse semigroup actions – to model partial symmetries

Γ an inverse semigroup of partial maps (translations and reflections)



Extremality proof by software

Let π = gj_forward_3_slope(f , λ1, λ2),
with f = 4/5, λ1 = 4/9 and λ2 = 2/3.
The program shows in < 1 second that
π is an extreme function.

polyhedral
complex

functional equations,
inverse semigroups

piecewise linear
perturbation ansatz

linear
algebra

Next: Extend this to parametric families

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22


Algorithmic and computational cutgeneratingfunctionology III

Transform automatic extremality test to a theorem discovery and proof technique

. . . by metaprogramming

Instead of explaining extremality test. . . an easier example:

Anti-definition

A matrix A is positive definite if . . . ??? . . .



Metaprogramming analysis of a grey-box program

When is the matrix A =

[
x y
y 1

4

]
positive definite? We have no idea, but we have a

trustworthy, real algebraic Python program for testing it for given x and y .

A.is positive definite()

Grey-box model: We can’t read the source code to understand what it does, but can

apply metaprogramming techniques to analyze the program.

Testpoint (x1, y1) = (−1, 1)

A.is positive definite() is False

in the proof cell x < 0 (side effect).

Testpoint (x2, y2) = ( 1
2
, 1)

A.is positive definite() is False

in the proof cell 0 < x < 4y 2.

Testpoint (x3, y3) = ( 2
3
, 1

3
)

A.is positive definite() is True

in the proof cell x > 4y 2.



Our metaprogramming technique SPAM
Simplified Python code

class ParametricRealFieldElement(FieldElement):

...

def _add_(self, other):

return ParametricRealFieldElement(self._val + other._val,

self._sym + other._sym,

parent=self.parent())

...

def __cmp__(left, right): # Py2

result = cmp(left._val, right._val)

if result == 0:

left.parent().record_to_eq(left.sym() - right.sym())

elif result == -1:

left.parent().record_to_lt(left.sym() - right.sym())

elif result == 1:

left.parent().record_to_lt(right.sym() - left.sym())

return result

...



Automated proof for drlm_backward_3_slope

by SPAM∗ = SPAM + wall crossing

Figure: The cell complexes of drlm_backward_3_slope, showing the parameters (f , bkpt).

Cell colors: constructible, but not minimal , minimal, but not extreme , extreme .

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+drlm_backward_3_slope(%22


Automated proof for gj_forward_3_slope

Figure: The cell complex of gj_forward_3_slope, showing the parameters (λ1, λ2) for fixed
f = 4/5.

Cell colors: constructible, but not minimal , minimal, but not extreme , extreme .

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22


Automated proof for gj_forward_3_slope

Figure: The cell complex of the parametric family gj_forward_3_slope. Left, showing the plane
of parameters (f , λ1) for fixed λ2 = 2/3; Right, showing the plane of parameters (f , λ2) for fixed

λ1 = 4/9. Cell colors: constructible, but not minimal , minimal, but not extreme , extreme .

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22


Correction for chen_4_slope

Chen’s theorem about his chen_4_slope family is incorrect
(conditions for extremality neither necessary nor sufficient).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

constructible
claimed_extreme

Figure: The extreme region of chen_4_slope claimed in the literature is incorrect. Parameters

(λ1, λ2); fixed f = 7/10, s+ = 2, s− = −4. Left, the incorrect hypotheses from Chen’s theorem

within the region of constructibility . Right, the cell complex computed by our implementation.

Cell colors: constructible, but not minimal , minimal, but not extreme , extreme .

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22


Correction for chen_4_slope

Theorem (Kö., Zhou, & the computer, 2019)

Let λ1, λ2 ∈ [0, 1). Let π : R/Z→ R be the function chen_4_slope, where f = 7/10,
s+ = 2 and s− = −4. Then π is an extreme function for Rf (R,Z), if and only if the
parameters λ1 and λ2 satisfy that

λ1 ≤
1

2
, λ2 ≤

1

2
, (s+f − 1)(1− s−f )λ1 ≤ (s+ − s−)λ2, and

(s+(1− f ) + 1)(s−(f − 1)− 1)λ2 ≤ (s+ − s−)λ1.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+chen_4_slope(%22


Computer-assisted discovery of new theorems

Take a function from computer-based search for extreme functions (on a grid)
Kö., Zhou (2015)

Invent some parametrization:

def param_3_slope_1(f=6/19, a=1/19, b=5/19, v=8/15):

...

Run minimality test:

sage: K.<f,a,b,v>=ParametricRealField([6/19,1/19,5/19,8/15])

sage: h = param_3_slope_1(f,a,b,v)

sage: minimality_test(h)

True

sage: K._eq_factor

{-f^2*v + 3*f*b*v + f^2 + f*a - 3*f*b - 3*a*b - f*v + b}

New equation! Eliminate v .



Computer-assisted discovery of new theorems

Revise definition:

def kzh_3_slope_param_extreme_1(f=6/19, a=1/19, b=5/19, field=None,

conditioncheck=True):

...

v = (f*f+f*a-3*f*b-3*a*b+b)/(f*f+f-3*f*b)

bkpts = [0, f, f+a, (1+f-b)/2, (1+f+b)/2, 1-a, 1]

values = [0, 1, v, (f-b)/2/f, (f+b)/2/f, 1-v, 0]

return piecewise_function_from_breakpoints_and_values

(bkpts, values, field=field)

Rerun the algorithm — full-dimensional cell

3*f + 4*a - b - 1 < 0 -a < 0
-f^2 - f*a + 3*f*b + 3*a*b - b < 0 -f + b < 0
f*a - 3*a*b - f + b < 0 -f - 3*b + 1 < 0
-f^2*a + 3*f*a*b - 3*a*b - f + b < 0

Compute the complex by wall-crossing search



Computer-assisted discovery of new theorems

Figure: Slices of the cell complex for the family kzh 3 slope param extreme 1 for f = i/19



Computer-assisted discovery of new theorems

Theorem (Kö., Zhou, & the computer, ISCO 2016)

Let f ∈ (0, 1) and a, b ∈ R such that

0 ≤ a, 0 ≤ b ≤ f and 3f + 4a− b − 1 ≤ 0.

The periodic, piecewise linear kzh_3_slope_param_extreme_1 function π : R/Z→ R
defined as follows is extreme. The function π has breakpoints at

0, f , f + a,
1 + f − b

2
,

1 + f + b

2
, 1− a, 1.

The values at breakpoints are given by π(0) = π(1) = 0, π(f + a) = 1− π(1− a) = v

and π( 1+f−b
2

) = 1− π( 1+f +b
2

) = f−b
2f

, where v = f 2+fa−3fb−3ab+b
f 2+f−3bf

.

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+kzh_3_slope_param_extreme_1(%22


Open: Global structure of the space of extreme functions

gj_forward_3_slope

(f , λ1, λ2)

gj_2_slope (f , λ)

https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_forward_3_slope(%22
https://github.com/mkoeppe/infinite-group-relaxation-code/search?q=%22def+gj_2_slope(%22


Revisiting the minimality test
Kö., Wang, 2019

Prove minimality without visiting all vertices of the polyhedral complex ∆P?

f 1

f

1

. . . by spatial branch and bound, minimizing the subadditivity slack ∆π. . .



Example: π = kzh 7 slope 1(), piecewise constant bounds

White regions: non-leaf
Yellow regions (leaf): Pruned by indivisible regions
Red regions (leaf): Pruned by bounding using estimators



Performance profile

Figure: Performance profiles of 5 algorithms. Three spatial B&B algorithms all use constant
bounds with different node selection strategies. The CPLEX approach uses Vielma’s
disaggregated logarithmic (DLog) formulation, which contains O(log2n) binary vairables.



Conclusion

“These new theorems are entirely unremarkable;

the plan for the future is to make up for it

by sheer quantity.”

https://github.com/mkoeppe/cutgeneratingfunctionology

https://github.com/mkoeppe/cutgeneratingfunctionology


SageMath (Python) package cutgeneratingfunctionology
https://github.com/mkoeppe/cutgeneratingfunctionology

Authors: Chun Yu Hong (2013), Kö. (2013–), Yuan Zhou (2014–), Jiawei Wang
(2016–), contributing undergraduate programmers

Models:

1-row Gomory–Johnson model

Gomory’s finite (cyclic) group problem

superadditive lifting functions

classical, general dual-feasible functions

multi-row code under development

Functionality:

electronic compendium of functions

automatic extremality test (Basu–Hildebrand–Kö.,

Math. Oper. Res. 2014, Hong–Kö.–Zhou, ICMS

2016, Hildebrand–Kö.–Zhou, 2018+)

computer-based search for extreme functions
(Kö.–Zhou, MPC 2016)

parametric analysis (Kö.–Zhou, ISCO 2016)

https://github.com/mkoeppe/cutgeneratingfunctionology

