The GLPK package is a part of the GNU project released under the aegis of GNU.

Copyright © 2000, 2001, 2002, 2003 Andrew Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All rights reserved.

Free Software Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111, USA.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.
Contents

1 Introduction
 1.1 LP Problem .. 7
 1.2 MIP Problem ... 9
 1.3 Brief Example ... 9

2 API Routines
 2.1 Problem object .. 14
 2.2 Problem creating and modifying routines 17
 2.2.1 lpx_create_prob — create problem object 17
 2.2.2 lpx_add_rows — add new rows to problem object 17
 2.2.3 lpx_add_cols — add new columns to problem object 17
 2.2.4 lpx_check_name — check correctness of symbolic name ... 17
 2.2.5 lpx_set_prob_name — assign (change) problem name 18
 2.2.6 lpx_set_row_name — assign (change) row name 18
 2.2.7 lpx_set_col_name — assign (change) column name 18
 2.2.8 lpx_set_row_bnds — set (change) row bounds 18
 2.2.9 lpx_set_col_bnds — set (change) column bounds 19
 2.2.10 lpx_set_obj_name — assign (change) objective function name 19
 2.2.11 lpx_set_obj_dir — set (change) optimization direction .. 20
 2.2.12 lpx_set_obj_c0 — set (change) constant term of the objective function 20
 2.2.13 lpx_set_row_coef — set (change) row objective coefficient ... 20
 2.2.14 lpx_set_col_coef — set (change) column objective coefficient ... 20
 2.2.15 lpx_load_mat — load the constraint matrix 21
 2.2.16 lpx_load_mat3 — load the constraint matrix 21
 2.2.17 lpx_set_mat_row — change row of the constraint matrix . 22
 2.2.18 lpx_set_mat_col — change column of the constraint matrix . 22
 2.2.19 lpx_unmark_all — unmark all rows and columns 22
 2.2.20 lpx_mark_row — assign mark to row 23
 2.2.21 lpx_mark_col — assign mark to column 23
 2.2.22 lpx_clear_mat — clear rows and columns of the constraint matrix . 23
 2.2.23 lpx_del_items — remove rows and columns from problem object ... 23
 2.2.24 lpx_delete_prob — delete problem object 24
 2.3 Problem querying routines 25
 2.3.1 lpx_get_num_rows — determine number of rows 25
 2.3.2 lpx_get_num_cols — determine number of columns 25
 2.3.3 lpx_get_num_nz — determine number of non-zero constraint coefficients ... 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.4</td>
<td><code>lpx_get_prob_name</code> — obtain problem name</td>
</tr>
<tr>
<td>2.3.5</td>
<td><code>lpx_get_row_name</code> — obtain row name</td>
</tr>
<tr>
<td>2.3.6</td>
<td><code>lpx_get_col_name</code> — obtain column name</td>
</tr>
<tr>
<td>2.3.7</td>
<td><code>lpx_get_row_bnds</code> — obtain row bounds</td>
</tr>
<tr>
<td>2.3.8</td>
<td><code>lpx_get_col_bnds</code> — obtain column bounds</td>
</tr>
<tr>
<td>2.3.9</td>
<td><code>lpx_get_obj_name</code> — obtain objective function name</td>
</tr>
<tr>
<td>2.3.10</td>
<td><code>lpx_get_obj_dir</code> — determine optimization direction</td>
</tr>
<tr>
<td>2.3.11</td>
<td><code>lpx_get_obj_c0</code> — obtain constant term of the objective function</td>
</tr>
<tr>
<td>2.3.12</td>
<td><code>lpx_get_row_coef</code> — obtain row objective coefficient</td>
</tr>
<tr>
<td>2.3.13</td>
<td><code>lpx_get_col_coef</code> — obtain column objective coefficient</td>
</tr>
<tr>
<td>2.3.14</td>
<td><code>lpx_get_mat_row</code> — obtain row of the constraint matrix</td>
</tr>
<tr>
<td>2.3.15</td>
<td><code>lpx_get_mat_col</code> — obtain column of the constraint matrix</td>
</tr>
<tr>
<td>2.3.16</td>
<td><code>lpx_get_row_mark</code> — determine row mark</td>
</tr>
<tr>
<td>2.3.17</td>
<td><code>lpx_get_col_mark</code> — determine column mark</td>
</tr>
<tr>
<td>2.4</td>
<td>Problem scaling routines</td>
</tr>
<tr>
<td>2.4.1</td>
<td><code>lpx_scale_prob</code> — scale problem data</td>
</tr>
<tr>
<td>2.4.2</td>
<td><code>lpx_unscale_prob</code> — unscale problem data</td>
</tr>
<tr>
<td>2.5</td>
<td>Basis constructing routines</td>
</tr>
<tr>
<td>2.5.1</td>
<td><code>lpx_std_basis</code> — build standard initial basis</td>
</tr>
<tr>
<td>2.5.2</td>
<td><code>lpx_adv_basis</code> — build advanced initial basis</td>
</tr>
<tr>
<td>2.5.3</td>
<td><code>lpx_set_row_stat</code> — set (change) row status</td>
</tr>
<tr>
<td>2.5.4</td>
<td><code>lpx_set_col_stat</code> — set (change) column status</td>
</tr>
<tr>
<td>2.6</td>
<td>Simplex method routines</td>
</tr>
<tr>
<td>2.6.1</td>
<td><code>lpx_warm_up</code> — “warm up” initial basis</td>
</tr>
<tr>
<td>2.6.2</td>
<td><code>lpx_simplex</code> — solve LP problem using the simplex method</td>
</tr>
<tr>
<td>2.7</td>
<td>Basic solution querying routines</td>
</tr>
<tr>
<td>2.7.1</td>
<td><code>lpx_get_status</code> — query basic solution status</td>
</tr>
<tr>
<td>2.7.2</td>
<td><code>lpx_get_prim_stat</code> — query primal status of basic solution</td>
</tr>
<tr>
<td>2.7.3</td>
<td><code>lpx_get_dual_stat</code> — query dual status of basic solution</td>
</tr>
<tr>
<td>2.7.4</td>
<td><code>lpx_get_row_info</code> — obtain row solution information</td>
</tr>
<tr>
<td>2.7.5</td>
<td><code>lpx_get_col_info</code> — obtain column solution information</td>
</tr>
<tr>
<td>2.7.6</td>
<td><code>lpx_get_obj_val</code> — obtain value of the objective function</td>
</tr>
<tr>
<td>2.7.7</td>
<td><code>lpx_check_kkt</code> — check Karush-Kuhn-Tucker conditions</td>
</tr>
<tr>
<td>2.8</td>
<td>Simplex table routines</td>
</tr>
<tr>
<td>2.8.1</td>
<td><code>lpx_eval_tab_row</code> — compute row of the simplex table</td>
</tr>
<tr>
<td>2.8.2</td>
<td><code>lpx_eval_tab_col</code> — compute column of the simplex table</td>
</tr>
<tr>
<td>2.8.3</td>
<td><code>lpx_transform_row</code> — transform explicitly specified row</td>
</tr>
<tr>
<td>2.8.4</td>
<td><code>lpx_transform_col</code> — transform explicitly specified column</td>
</tr>
<tr>
<td>2.8.5</td>
<td><code>lpx_primal_ratio_test</code> — perform primal ratio test</td>
</tr>
<tr>
<td>2.8.6</td>
<td><code>lpx_dual_ratio_test</code> — perform dual ratio test</td>
</tr>
<tr>
<td>2.9</td>
<td>Interior point method routines</td>
</tr>
<tr>
<td>2.9.1</td>
<td><code>lpx_interior</code> — solve LP problem using the interior point method</td>
</tr>
<tr>
<td>2.9.2</td>
<td><code>lpx_get_ips_stat</code> — query status of interior point solution</td>
</tr>
<tr>
<td>2.9.3</td>
<td><code>lpx_get_ips_row</code> — obtain row interior point solution</td>
</tr>
<tr>
<td>2.9.4</td>
<td><code>lpx_get_ips_col</code> — obtain column interior point solution</td>
</tr>
<tr>
<td>2.9.5</td>
<td><code>lpx_get_ips_obj</code> — obtain interior point value of the objective function</td>
</tr>
<tr>
<td>2.10</td>
<td>MIP routines</td>
</tr>
</tbody>
</table>
2.10.1 lpx_set_class — set (change) problem class 51
2.10.2 lpx_get_class — query problem class 51
2.10.3 lpx_set_col_kind — set (change) column kind 51
2.10.4 lpx_get_col_kind — query column kind 51
2.10.5 lpx_get_num_int — determine number of integer columns 52
2.10.6 lpx_get_num_bin — determine number of binary columns 52
2.10.7 lpx_integer — solve MIP problem using the branch-and-bound method ... 52
2.10.8 lpx_get_mip_stat — query status of MIP solution 53
2.10.9 lpx_get_mip_row — obtain row activity for MIP solution 54
2.10.10 lpx_get_mip_col — obtain column activity for MIP solution 54
2.10.11 lpx_get_mip_obj — obtain value of the objective function for MIP solution ... 54

2.11 Control parameters and statistics routines 55
2.11.1 lpx_reset_parms — reset control parameters to default values 55
2.11.2 lpx_set_int_parm — set (change) integer control parameter 55
2.11.3 lpx_get_int_parm — query integer control parameter 55
2.11.4 lpx_set_real_parm — set (change) real control parameter 55
2.11.5 lpx_get_real_parm — query real control parameter 56
2.11.6 Parameter list ... 56

2.12 Utility routines .. 59
2.12.1 lpx_read_mps — read problem data in MPS format 59
2.12.2 lpx_read_lpt — read problem data in CPLEX LP format 59
2.12.3 lpx_read_model — read model written in GNU MathProg modeling language .. 59
2.12.4 lpx_write_mps — write problem data in MPS format 60
2.12.5 lpx_write_lpt — write problem data in CPLEX LP format 60
2.12.6 lpx_print_prob — write problem data in plain text format 61
2.12.7 lpx_read_bas — read predefined basis in MPS format 61
2.12.8 lpx_write_bas — write current basis in MPS format 61
2.12.9 lpx_print_sol — write basic solution in printable format 62
2.12.10 lpx_print_ips — write interior point solution in printable format 62
2.12.11 lpx_print_mip — write MIP solution in printable format 62

A Installing GLPK on Your Computer ... 64
A.1 Obtaining GLPK distribution file ... 64
A.2 Unpacking the distribution file .. 64
A.3 Configuring the package ... 64
A.4 Compiling and checking the package 65
A.5 Installing the package ... 65
A.6 Uninstalling the package .. 66

B MPS Format .. 67
B.1 Prelude ... 67
B.2 NAME indicator card ... 68
B.3 ROWS section ... 68
B.4 COLUMNS section ... 69
B.5 RHS section .. 69
Chapter 1

Introduction

GLPK (GNU Linear Programming Kit) is a set of routines written in the ANSI C programming language and organized in the form of a callable library. It is intended for solving linear programming (LP), mixed integer programming (MIP), and other related problems.

1.1 LP Problem

GLPK assumes the following formulation of linear programming (LP) problem:

minimize (or maximize)

\[Z = c_1x_1 + c_2x_2 + \ldots + c_{m+n}x_{m+n} + c_0 \] \hspace{1cm} (1.1)

subject to linear constraints

\[x_1 = a_{11}x_{m+1} + a_{12}x_{m+2} + \ldots + a_{1n}x_{m+n} \]
\[x_2 = a_{21}x_{m+1} + a_{22}x_{m+2} + \ldots + a_{2n}x_{m+n} \]
\[\quad \ldots \ldots \ldots \ldots \]
\[x_m = a_{m1}x_{m+1} + a_{m2}x_{m+2} + \ldots + a_{mn}x_{m+n} \] \hspace{1cm} (1.2)

and bounds of variables

\[l_1 \leq x_1 \leq u_1 \]
\[l_2 \leq x_2 \leq u_2 \]
\[\quad \ldots \ldots \]
\[l_{m+n} \leq x_{m+n} \leq u_{m+n} \] \hspace{1cm} (1.3)

where: \(x_1, x_2, \ldots, x_m \) — auxiliary variables; \(x_{m+1}, x_{m+2}, \ldots, x_{m+n} \) — structural variables; \(Z \) — objective function; \(c_1, c_2, \ldots, c_{m+n} \) — coefficients of the objective function; \(c_0 \) — constant term of the objective function; \(a_{ij}, a_{ij}, \ldots, a_{mn} \) — constraint coefficients; \(l_1, l_2, \ldots, l_{m+n} \) — lower bounds of variables; \(u_1, u_2, \ldots, u_{m+n} \) — upper bounds of variables.

Auxiliary variables are also called rows, because they correspond to rows of the constraint matrix (i.e. a matrix built of the constraint coefficients). Analogously, structural variables are also called columns, because they correspond to columns of the constraint matrix.

Bounds of variables can be finite as well as infinite. Besides, lower and upper bounds can be equal to each other. Thus, the following types of variables are possible:
Bounds of variable Type of variable
\(-\infty < x_k < +\infty\) Free (unbounded) variable
\(l_k \leq x_k < +\infty\) Variable with lower bound
\(-\infty < x_k \leq u_k\) Variable with upper bound
\(l_k \leq x_k \leq u_k\) Double-bounded variable
\(l_k = x_k = u_k\) Fixed variable

Note that the types of variables shown above are applicable to structural as well as to auxiliary variables.

To solve the LP problem (1.1)—(1.3) is to find such values of all structural and auxiliary variables, which:

a) satisfy to all the linear constraints (1.2), and
b) are within their bounds (1.3), and
c) provide a smallest (in the case of minimization) or a largest (in the case of maximization) value of the objective function (1.1).

For solving LP problems GLPK uses a well known numerical procedure called the simplex method. The simplex method performs iterations, where on each iteration it transforms the original system of equality constraints (1.2) resolving them through different sets of variables to an equivalent system called the simplex table (or sometimes the simplex tableau), which has the following form:

\[
\begin{align*}
Z &= d_1(x_N)_1 + d_2(x_N)_2 + \ldots + d_n(x_N)_n \\
(x_B)_1 &= \alpha_{11}(x_N)_1 + \alpha_{12}(x_N)_2 + \ldots + \alpha_{1n}(x_N)_n \\
(x_B)_2 &= \alpha_{21}(x_N)_1 + \alpha_{22}(x_N)_2 + \ldots + \alpha_{2n}(x_N)_n \\
&\quad \ldots \ldots \ldots \ldots \ldots \ldots \\
(x_B)_m &= \alpha_{m1}(x_N)_1 + \alpha_{m2}(x_N)_2 + \ldots + \alpha_{mn}(x_N)_n
\end{align*}
\]

(1.4)

where: \((x_B)_1, (x_B)_2, \ldots, (x_B)_m\) — basic variables; \((x_N)_1, (x_N)_2, \ldots, (x_N)_n\) — non-basic variables; \(d_1, d_2, \ldots, d_n\) — reduced costs; \(\alpha_{11}, \alpha_{12}, \ldots, \alpha_{mn}\) — coefficients of the simplex table. (May note that the original LP problem (1.1)—(1.3) also has the form of a simplex table, where all equalities are resolved through auxiliary variables.)

From the linear programming theory it is well known that if an optimal solution of the LP problem (1.1)—(1.3) exists, it can always be written in the form (1.4), where non-basic variables are fixed on their bounds, and values of the objective function and basic variables are determined by the corresponding equalities of the simplex table.

A set of values of all basic and non-basic variables determined by the simplex table is called basic solution. If all basic variables are within their bounds, the basic solution is called (primal) feasible, otherwise it is called (primal) infeasible. A feasible basic solution, which provides a smallest (in case of minimization) or a largest (in case of maximization) value of the objective function is called optimal. Therefore, for solving LP problem the simplex method tries to find its optimal basic solution.

Primal feasibility of some basic solution may be stated by simple checking if all basic variables are within their bounds. Basic solution is optimal if additionally the following optimality conditions are satisfied for all non-basic variables:

<table>
<thead>
<tr>
<th>Status of ((x_N)_j)</th>
<th>Minimization</th>
<th>Maximization</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x_N)_j) is free</td>
<td>(d_j = 0)</td>
<td>(d_j = 0)</td>
</tr>
<tr>
<td>((x_N)_j) is on its lower bound</td>
<td>(d_j \geq 0)</td>
<td>(d_j \leq 0)</td>
</tr>
<tr>
<td>((x_N)_j) is on its upper bound</td>
<td>(d_j \leq 0)</td>
<td>(d_j \geq 0)</td>
</tr>
</tbody>
</table>
In other words, basic solution is optimal if there is no non-basic variable, which changing in the feasible direction (i.e. increasing if it is free or on its lower bound, or decreasing if it is free or on its upper bound) can improve (i.e. decrease in case of minimization or increase in case of maximization) the objective function.

If all non-basic variables satisfy to the optimality conditions shown above (independently on whether basic variables are within their bounds or not), the basic solution is called dual feasible, otherwise it is called dual infeasible.

It may happen that some LP problem has no primal feasible solution due to incorrect formulation — this means that its constraints conflict with each other. It also may happen that some LP problem has unbounded solution again due to incorrect formulation — this means that some non-basic variable can improve the objective function, i.e. the optimality conditions are violated, and at the same time this variable can infinitely change in the feasible direction meeting no resistance from basic variables. (May note that in the latter case the LP problem has no dual feasible solution.)

1.2 MIP Problem

Mixed integer linear programming (MIP) problem is LP problem in which some variables are additionally required to be integer.

GLPK assumes that MIP problem has the same formulation as ordinary (pure) LP problem (1.1)—(1.3), i.e. includes auxiliary and structural variables, which may have lower and/or upper bounds. However, in case of MIP problem some variables may be required to be integer. This additional constraint means that a value of each integer variable must be only integer number. (Should note that GLPK allows only structural variables to be of integer kind.)

1.3 Brief Example

In order to understand what GLPK is from the user’s standpoint, consider the following simple LP problem:

maximize
\[Z = 10x_1 + 6x_2 + 4x_3 \]

subject to
\[x_1 + x_2 + x_3 \leq 100 \]
\[10x_1 + 4x_2 + 5x_3 \leq 600 \]
\[2x_1 + 2x_2 + 6x_3 \leq 300 \]

where all variables are non-negative
\[x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0 \]

At first this LP problem should be transformed to the standard form (1.1)—(1.3). It can be easily done introducing auxiliary variables, by one for each original inequality constraint. Thus, the considered problem can be reformulated as follows:
maximize

\[Z = 10x_1 + 6x_2 + 4x_3 \]

subject to

\[\begin{align*}
 p &= x_1 + x_2 + x_3 \\
 q &= 10x_1 + 4x_2 + 5x_3 \\
 r &= 2x_1 + 2x_2 + 6x_3
\end{align*} \]

and bounds of variables

\[\begin{align*}
 -\infty < p &\leq 100 & 0 \leq x_1 < +\infty \\
 -\infty < q &\leq 600 & 0 \leq x_2 < +\infty \\
 -\infty < r &\leq 300 & 0 \leq x_3 < +\infty
\end{align*} \]

where \(p, q, r\) are auxiliary variables, and \(x_1, x_2, x_3\) are structural variables.

The C program shown below uses GLPK API routines in order to solve this example of LP problem.

/* sample.c */

#include <stdio.h>
#include <stdlib.h>
#include "glpk.h"

int main(void)
{
 LPX *lp;
 int rn[1+9], cn[1+9];
 double a[1+9], Z, x1, x2, x3;

 s1: lp = lpx_create_prob();
 s2: lpx_set_prob_name(lp, "sample");

 s3: lpx_add_rows(lp, 3);
 s4: lpx_set_row_name(lp, 1, "p");
 s5: lpx_set_row_bnds(lp, 1, LPX_UP, 0.0, 100.0);
 s6: lpx_set_row_name(lp, 2, "q");
 s7: lpx_set_row_bnds(lp, 2, LPX_UP, 0.0, 600.0);
 s8: lpx_set_row_name(lp, 3, "r");
 s9: lpx_set_row_bnds(lp, 3, LPX_UP, 0.0, 300.0);

 s10: lpx_add_cols(lp, 3);

 s11: lpx_set_col_name(lp, 1, "x1");
 s12: lpx_set_col_bnds(lp, 1, LPX_LO, 0.0, 0.0);
 s13: lpx_set_col_name(lp, 2, "x2");
 s14: lpx_set_col_bnds(lp, 2, LPX_LO, 0.0, 0.0);
 s15: lpx_set_col_name(lp, 3, "x3");
 s16: lpx_set_col_bnds(lp, 3, LPX_LO, 0.0, 0.0);
The statement s1 creates a linear programming problem object using the routine lpx_create_prob. Being created this object initially is empty. The statement s2 assigns a symbolic name to the problem object.

The statement s3 adds three rows to the problem object.

The statement s4 assigns the symbolic name 'p' to the first row, and the statement s5 sets type and bounds of the first row, where LPX_UP means that the row has an upper bound. The statements s6, s7, s8, s9 are used in the same way in order to assign the symbolic names 'q' and 'r' to, respectively, the second and the third rows and also set their types and bounds.

The statement s10 adds three columns to the problem object.

The statement s11 assigns the symbolic name 'x1' to the first column, and the statement s12 sets type and bounds of the first column, where LPX_LO means that the column has an lower bound. The statements s13, s14, s15, s16 are used in the same way in order to assign the symbolic names 'x2' and 'x3' to, respectively, the second and the third columns and also set their types and bounds.
The statements s17—s25 prepare non-zero elements of the constraint matrix (i.e. constraint coefficients). Row indices of each element are stored in the array \texttt{rn}, column indices are stored in the array \texttt{cn}, and numerical values of the corresponding elements are stored in the array \texttt{a}. Then the statement \texttt{x26} calls the routine \texttt{lpx_load_mat3}, which loads information from these three arrays into the problem object.

The statement \texttt{s27} calls the routine \texttt{lpx_set_obj_dir} in order to set optimization direction, where \texttt{LPX_MAX} means maximization.

The statement \texttt{s28} sets coefficient of the objective function at the first column (structural variable). The statements \texttt{s29} and \texttt{s30} do the same for the second and the third columns.

Now all data have been entered into the problem object, and therefore the statement \texttt{s31} calls the routine \texttt{lpx_simplex}, which is a driver to the simplex method, in order to solve the LP problem. This routine finds an optimal solution and stores all relevant information back into the problem object.

The statement \texttt{s32} obtains a computed value of the objective function, and the statements \texttt{s33}—\texttt{s35} obtain computed values of structural variables (columns), which correspond to the optimal basic solution found by the solver.

The statement \texttt{s36} prints the found optimal solution to the standard output. The printout may look like follows:

\[
Z = 733.333; \ x1 = 33.3333; \ x2 = 66.6667; \ x3 = 0
\]

Finally, the statement \texttt{s37} calls the routine \texttt{lpx_delete_prob}, which frees all the memory allocated to the problem object.
Chapter 2

API Routines

This chapter describes GLPK API routines intended for using in application programs.

Error handling If some GLPK API routine detects erroneous or incorrect data passed by the application program, it sends appropriate diagnostic messages to the standard output and then abnormally terminates the application program. In most practical cases this allows to simplify programming avoiding numerous checks of return codes. Thus, in order to prevent crashing the application program should check all data, which are suspected to be incorrect, before calling GLPK API routines.

Should note that this kind of error handling is used only in the cases of incorrect data passed by the application program. If, for example, the application program calls some GLPK API routine to read data from an input file and these data are incorrect, the GLPK API routine reports about error in the usual way by means of return code.

Thread safety Currently GLPK API routines are non-reentrant and therefore cannot be used in multi-threaded programs.

Array indexing Normally all GLPK routines start array indexing from 1, not from 0 (except the specially stipulated cases). This means, for example, if some vector x of the length n is passed as an array to some GLPK routine, the latter expects vector components to be placed in locations $x[1], x[2], \ldots, x[n]$, and the location $x[0]$ normally is not used.

In order to avoid indexing errors it is most convenient and most reliable to declare the array x as follows:

```c
double x[1+n];
```

or to allocate it as follows:

```c
double *x;

x = calloc(1+n, sizeof(double));
```

In both cases one extra location $x[0]$ is reserved that allows passing this array to GLPK routines in a usual way.
2.1 Problem object

GLPK API routines deal with so-called problem objects, which are program objects of type `LPX` intended to represent particular LP and MIP problem instances.

The type `LPX` is a data structure declared in the header file `glpk.h` as follows:

```c
typedef struct { ... } LPX;
```

Problem objects (i.e., program objects of the `LPX` type) are allocated and managed internally by the GLPK API routines. The application program should never use any members of the `LPX` structure directly and should deal only with pointers to these objects (that is, `LPX *` values).

Each problem object consists of four logical segments, which are:
- problem segment,
- basis segment,
- interior point segment,
- MIP segment, and
- control parameters and statistics segment.

Problem segment The problem segment contains original LP/MIP data, which corresponds to the problem formulation (1.1)—(1.3) (see Section 1.1, page 7):
- rows (auxiliary variables),
- columns (structural variables),
- objective function, and
- constraint matrix.

Rows and columns have the same set of the following attributes:
- ordinal number,
- symbolic name (1 up to 255 arbitrary graphic characters),
- type (free, lower bound, upper bound, double bound, fixed),
- numerical values of lower and upper bounds,
- scale factor.

Ordinal numbers are intended for referencing rows and columns. Row ordinal numbers are integers $1, 2, \ldots, m$, and column ordinal numbers are integers $1, 2, \ldots, n$, where m and n are, respectively, current number of rows and columns in the problem object.

Symbolic names are intended only for informational purposes. They cannot be used for referencing rows and columns.

Types and bounds of rows (auxiliary variables) and columns (structural variables) were explained above (see Section 1.1, page 7).

Scale factors are used internally for scaling the corresponding rows and columns of the constraint matrix.

Information about the objective function includes numerical values of objective coefficients at auxiliary and structural variables, and also includes a flag, which defines the optimization direction (minimization or maximization).

The constraint matrix is a $m \times n$ rectangular matrix built of constraint coefficients a_{ij}, which defines the system of linear constraints (1.2) (see Section 1.1, page 7). This matrix is stored in the problem object in both row-wise and column-wise sparse formats.

Once the problem object has been created, the application program can access and modify any components of the problem segment in arbitrary order.
Basis segment The *basis segment* of the problem object keeps information related to a current basic solution. This information includes:

- row and column statuses,
- basic solution statuses,
- factorization of the current basis matrix, and
- basic solution components.

The *row and column statuses* define which rows and columns are basic and which are non-basic. These statuses may be assigned either by the application program or by some API routines. Note that these statuses are always defined independently on whether the corresponding basis valid or not.

The *basic solution statuses* include the *primal status* and the *dual status*, which are set by the simplex-based solver once the problem has been solved. The primal status shows whether a primal basic solution is feasible, infeasible, or undefined. The dual status shows the same for a dual basic solution.

The *factorization of the basis matrix* is some factorized form (like LU-factorization) of the current basis matrix (defined by the current row and column statuses). The factorization is used by the simplex-based solver and kept when the solver terminates the search. This feature allows efficiently reoptimizing the problem after some modifications (for example, after changing some bounds or objective coefficients). It also allows performing a post-optimal analysis (for example, computing components of the simplex table, etc.).

The *basic solution components* include primal and dual values of all auxiliary and structural variables for the most recently obtained basic solution.

Interior point segment The *interior point segment* is automatically allocated after the problem has been solved using the interior point solver. It contains interior point solution components, which include the solution status, and primal and dual values of all auxiliary and structural variables.

MIP segment The *MIP segment* is used only for MIP problems. This segment includes:

- column kinds,
- MIP solution status, and
- MIP solution components.

The *column kinds* define which columns (i.e. structural variables) are integer and which are continuous.

The *MIP solution status* is set by the MIP solver and shows whether a MIP solution is integer optimal, integer feasible (non-optimal), or undefined.

The *MIP solution components* are computed by the MIP solver and includes primal values of all auxiliary and structural variables for the most recently obtained MIP solution.

Note that in the case of MIP problem the basis segment corresponds to an optimal solution of LP relaxation, which is also available to the application program.

Currently the search tree is not kept in the MIP segment. Therefore if the search has been finished or terminated, it cannot be continued.

Control parameters and statistics segment This segment contains a fixed set of parameters, where each parameter has the following three attributes:

- code,
- type, and
- current value.
The parameter code is intended for referencing a particular parameter. All the parameter codes have symbolic names, which are macros defined in the header file `glpk.h`. Note that the parameter codes are distinct positive integers.

The parameter type can be integer, real (floating-point), and text (character string).

The parameter value is its current value kept in the problem object. Initially (once the problem object has been created) all parameters are assigned to some standard default values.

Parameters are intended for several purposes. Some of them, which are called control parameters, affect on the behavior of API routines (for example, the parameter `LPX_K_ITLIM` limits maximal number of simplex iterations available to the solver). Others, which are called statistics, just represent some additional information about the problem object (for example, the parameter `LPX_K_ITCNT` shows how many simplex iterations were performed for a particular problem object).
2.2 Problem creating and modifying routines

2.2.1 lpx_create_prob — create problem object

Synopsis

#include "glpk.h"
LPX *lpx_create_prob(void);

Description The routine lpx_create_prob creates a new problem object, which is "empty", i.e. has no rows and no columns.

Returns The routine returns a pointer to the created object, which should be used in any subsequent operations on this object.

2.2.2 lpx_add_rows — add new rows to problem object

Synopsis

#include "glpk.h"
void lpx_add_rows(LPX *lp, int nrs);

Description The routine lpx_add_rows adds nrs rows (constraints) to the specified problem object. New rows are always added to the end of the row list, so ordinal numbers of existing rows are not changed.

Being added each new row is free (unbounded) and has no constraint coefficients.

2.2.3 lpx_add_cols — add new columns to problem object

Synopsis

#include "glpk.h"
void lpx_add_cols(LPX *lp, int ncs);

Description The routine lpx_add_cols adds ncs columns (structural variables) to the specified problem object. New columns are always added to the end of the column list, so ordinal numbers of existing columns are not changed.

Being added each new structural variable is fixed at zero and has no constraint coefficients.

2.2.4 lpx_check_name — check correctness of symbolic name

Synopsis

#include "glpk.h"
int lpx_check_name(char *name);
Description The routine `lpx_check_name` checks a given symbolic name for correctness.

A symbolic name is considered as correct if it contains from 1 up to 255 graphic characters.

Returns If the given symbolic name is correct, the routine returns zero. Otherwise the routine returns non-zero.

2.2.5 lpx_set_prob_name — assign (change) problem name

Synopsis

```c
#include "glpk.h"
void lpx_set_prob_name(LPX *lp, char *name);
```

Description The routine `lpx_set_prob_name` assigns the specified symbolic name to a problem object, which the parameter `lp` points to.

If the parameter `name` is NULL, the routine just erases an existing symbolic name of the problem object.

2.2.6 lpx_set_row_name — assign (change) row name

Synopsis

```c
#include "glpk.h"
void lpx_set_row_name(LPX *lp, int i, char *name);
```

Description The routine `lpx_set_row_name` assigns the specified symbolic name to the `i`-th row (auxiliary variable) of a problem object, which the parameter `lp` points to.

If the parameter `name` is NULL, the routine just erases an existing name of the `i`-th row.

2.2.7 lpx_set_col_name — assign (change) column name

Synopsis

```c
#include "glpk.h"
void lpx_set_col_name(LPX *lp, int j, char *name);
```

Description The routine `lpx_set_col_name` assigns the specified symbolic name to the `j`-th column (structural variable) of a problem object, which the parameter `lp` points to.

If the parameter `name` is NULL, the routine just erases an existing name of the `j`-th column.

2.2.8 lpx_set_row_bnds — set (change) row bounds

Synopsis

```c
#include "glpk.h"
void lpx_set_row_bnds(LPX *lp, int i, int typx, double lb, double ub);
```
Description The routine `lpx_set_row_bnds` sets (changes) type and bounds of the \(i\)-th row (auxiliary variable).

The parameters `typx`, `lb`, and `ub` should specify, respectively, the type, lower bound, and upper bound as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Bounds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_FR</td>
<td>(-\infty < x < +\infty)</td>
<td>Free (unbounded) variable</td>
</tr>
<tr>
<td>LPX_LO</td>
<td>(lb \leq x < +\infty)</td>
<td>Variable with lower bound</td>
</tr>
<tr>
<td>LPX_UP</td>
<td>(-\infty < x \leq ub)</td>
<td>Variable with upper bound</td>
</tr>
<tr>
<td>LPX_DB</td>
<td>(lb \leq x \leq ub)</td>
<td>Double-bounded variable</td>
</tr>
<tr>
<td>LPX_FX</td>
<td>(lb = x = ub)</td>
<td>Fixed variable</td>
</tr>
</tbody>
</table>

where \(x\) is an auxiliary variable that corresponds to the \(i\)-th row.

If the row has no lower bound, the parameter \(lb\) is ignored. If the row has no upper bound, the parameter \(ub\) is ignored. If the row is an equality constraint (i.e. the corresponding auxiliary variable is of fixed type), the parameter \(lb\) is used as a right-hand side, and the parameter \(ub\) is ignored.

2.2.9 lpx_set_col_bnds — set (change) column bounds

Synopsis

```c
#include "glpk.h"
void lpx_set_col_bnds(LPX *lp, int j, int typx, double lb, double ub);
```

Description The routine `lpx_set_col_bnds` sets (changes) type and bounds of the \(j\)-th column (structural variable).

The parameters `typx`, `lb`, and `ub` should specify, respectively, the type, lower bound, and upper bound as follows:

<table>
<thead>
<tr>
<th>Type</th>
<th>Bounds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_FR</td>
<td>(-\infty < x < +\infty)</td>
<td>Free (unbounded) variable</td>
</tr>
<tr>
<td>LPX_LO</td>
<td>(lb \leq x < +\infty)</td>
<td>Variable with lower bound</td>
</tr>
<tr>
<td>LPX_UP</td>
<td>(-\infty < x \leq ub)</td>
<td>Variable with upper bound</td>
</tr>
<tr>
<td>LPX_DB</td>
<td>(lb \leq x \leq ub)</td>
<td>Double-bounded variable</td>
</tr>
<tr>
<td>LPX_FX</td>
<td>(lb = x = ub)</td>
<td>Fixed variable</td>
</tr>
</tbody>
</table>

where \(x\) is a structural variable that corresponds to the \(j\)-th column.

If the column has no lower bound, the parameter \(lb\) is ignored. If the column has no upper bound, the parameter \(ub\) is ignored. If the column is of fixed type, the parameter \(lb\) is used as a fixed value, and the parameter \(ub\) is ignored.

2.2.10 lpx_set_obj_name — assign (change) objective function name

Synopsis

```c
#include "glpk.h"
void lpx_set_obj_name(LPX *lp, char *name);
```
Description The routine `lpx_set_obj_name` assigns the specified symbolic `name` to the objective function.
If the parameter `name` is `NULL`, the routine just erases an existing symbolic name of the objective function.

2.2.11 lpx_set_obj_dir — set (change) optimization direction

Synopsis

```c
#include "glpk.h"
void lpx_set_obj_dir(LPX *lp, int dir);
```

Description The routine `lpx_set_obj_dir` sets (changes) the optimization direction (i.e. the sense of the objective function) as specified by the parameter `dir`:
- `LPX_MIN` the objective function should be minimized;
- `LPX_MAX` the objective function should be maximized.

2.2.12 lpx_set_obj_c0 — set (change) constant term of the objective function

Synopsis

```c
#include "glpk.h"
void lpx_set_obj_c0(LPX *lp, double c0);
```

Description The routine `lpx_set_obj_c0` sets (changes) a constant term of the objective function for an LP problem object, which the parameter `lp` points to. A new value of the constant term is specified by the parameter `c0`.

2.2.13 lpx_set_row_coef — set (change) row objective coefficient

Synopsis

```c
#include "glpk.h"
void lpx_set_row_coef(LPX *lp, int i, double coef);
```

Description The routine `lpx_set_row_coef` sets (changes) an objective coefficient at the `i`-th auxiliary variable (row). A new value of the objective coefficient is specified by the parameter `coef`. (Note that zero objective coefficients are allowed.)

2.2.14 lpx_set_col_coef — set (change) column objective coefficient

Synopsis

```c
#include "glpk.h"
void lpx_set_col_coef(LPX *lp, int j, double coef);
```
Description The routine `lpx_set_col_coef` sets (changes) an objective coefficient at the j-th structural variable (column). A new value of the objective coefficient is specified by the parameter `coef`. (Note that zero objective coefficients are allowed.)

2.2.15 lpx_load_mat — load the constraint matrix

Synopsis

```c
#include "glpk.h"
void lpx_load_mat(LPX *lp,
    void *info, double (*mat)(void *info, int *i, int *j));
```

Description The routine `lpx_load_mat` loads non-zero elements of the constraint matrix (i.e. constraint coefficients) from a file specified by the formal routine `mat`. All existing contents of the constraint matrix is destroyed.

The parameter `info` is a transit pointer passed to the formal routine `mat` (see below).

The formal routine `mat` specifies a set of non-zero elements, which should be loaded into the matrix. The routine `lpx_load_mat` calls the routine `mat` in order to obtain a next non-zero element a_{ij}. In response the routine `mat` should store row and column indices of this next element to the locations `*i` and `*j`, respectively, and return a numerical value of this next element. Elements may be enumerated in arbitrary order. Note that zero elements and multiplets (i.e. elements with identical row and column indices) are not allowed. If there is no next element, the routine `mat` should store zero to both locations `*i` and `*j` and then “rewind” the file in order to begin enumerating again from the first element.

Using the routine `lpx_load_mat` is the most efficient way for initial loading the constraint matrix.

2.2.16 lpx_load_mat3 — load the constraint matrix

Synopsis

```c
#include "glpk.h"
void lpx_load_mat3(LPX *lp, int nz, int rn[], int cn[], double a[]);
```

Description The routine `lpx_load_mat3` loads non-zero elements of the constraint matrix (i.e. constraint coefficients) from the arrays `rn`, `cn`, and `a`. All existing contents of the constraint matrix is destroyed.

The parameter `nz` specifies number of non-zero coefficients to be loaded.

A particular constraint coefficient a_{ij} is specified as a triplet $(rn[k], cn[k], a[k])$, $k = 1, \ldots, nz$, where `rn[k]` is its row index i, `cn[k]` is its column index j, and `a[k]` is its numerical value a_{ij}. Coefficients may be enumerated in arbitrary order. Note that zero coefficients as well as multiplets (i.e. coefficients with identical row and column indices) are not allowed.
2.2.17 lpx_set_mat_row — change row of the constraint matrix

Synopsis

#include "glpk.h"
void lpx_set_mat_row(LPX *lp, int i, int len, int ndx[], double val[]);

Description The routine lpx_set_mat_row sets (replaces) the i-th row of the constraint matrix for the problem object, which the parameter lp points to.

Column indices and numerical values of new non-zero coefficients of the i-th row should be placed in the locations ndx[1], ..., ndx[len] and val[1], ..., val[len], respectively, where 0 ≤ len ≤ n is the new length of the i-th row, n is number of columns.

Note that zero coefficients and multiplets (i.e. coefficients with identical column indices) are not allowed.

The routine lpx_set_mat_row is intended mainly for modifying the constraint matrix. Using this routine for initial loading the constraint matrix is possible, but not very efficient.

2.2.18 lpx_set_mat_col — change column of the constraint matrix

Synopsis

#include "glpk.h"
void lpx_set_mat_col(LPX *lp, int j, int len, int ndx[], double val[]);

Description The routine lpx_set_mat_col sets (replaces) the j-th column of the constraint matrix for the problem object, which the parameter lp points to.

Row indices and numerical values of new non-zero coefficients of the j-th column should be placed in the locations ndx[1], ..., ndx[len] and val[1], ..., val[len], respectively, where 0 ≤ len ≤ m is the new length of the j-th column, m is number of rows.

Note that zero coefficients and multiplets (i.e. coefficients with identical row indices) are not allowed.

The routine lpx_set_mat_col is intended mainly for modifying the constraint matrix. Using this routine for initial loading the constraint matrix is possible, but not very efficient.

2.2.19 lpx_unmark_all — unmark all rows and columns

Synopsis

#include "glpk.h"
void lpx_unmark_all(LPX *lp);

Description The routine lpx_unmark_all resets marks of all rows and columns of the specified problem object to zero.

It is recommended to use this routine before subsequent calls to the routines lpx_mark_row and lpx_mark_col.
2.2.20 lpx_mark_row — assign mark to row

Synopsis

#include "glpk.h"
void lpx_mark_row(LPX *lp, int i, int mark);

Description The routine lpx_mark_row assigns an integer mark to the i-th row.
The sense of marking depends on what operation will then be performed on the problem object.

2.2.21 lpx_mark_col — assign mark to column

Synopsis

#include "glpk.h"
void lpx_mark_col(LPX *lp, int j, int mark);

Description The routine lpx_mark_col assigns an integer mark to the j-th column.
The sense of marking depends on what operation will then be performed on the problem object.

2.2.22 lpx_clear_mat — clear rows and columns of the constraint matrix

Synopsis

#include "glpk.h"
void lpx_clear_mat(LPX *lp);

Description The routine lpx_clear_mat clears (nullifies) marked rows and columns of the constraint matrix.
Note that a row (column) is considered as marked, if its mark assigned by using the routine lpx_mark_row (lpx_mark_col) is non-zero.
On exit the routine remains the row and column marks unchanged.

2.2.23 lpx_del_items — remove rows and columns from problem object

Synopsis

#include "glpk.h"
void lpx_del_items(LPX *lp);
Description The routine \texttt{lpx_del_items} deletes all marked rows and columns from a problem object, which the parameter \texttt{lp} points to.

Note that a row (column) is considered as marked, if its mark assigned by using the routine \texttt{lpx_mark_row (lpx_mark_col)} is non-zero.

Deleting rows and columns involves changing oridinal numbers of other rows and columns, which are remaining in the problem object. Let, for example, before deletion there were 5 rows \(a, b, c, d, e\) with ordinal numbers 1, 2, 3, 4, 5, and 6 columns \(p, q, r, s, t, u\) with ordinal numbers 1, 2, 3, 4, 5, 6. Let rows \(b, d\) and columns \(p, r, t, u\) were deleted. Then after deletion the remaining rows \(a, c, e\) will have new oridinal numbers 1, 2, 3, and the remaining columns \(q, s\) will have new ordinal numbers 1, 2. In other words, new ordinal numbers can be determined in the assumption that the order of the remaining rows and columns is not changed.

2.2.24 \texttt{lpx_delete_prob --- delete problem object}

Synopsis

\begin{verbatim}
#include "glpk.h"
void lpx_delete_prob(LPX *lp);
\end{verbatim}

Description The routine \texttt{lpx_delete_prob} deletes a problem object, which the parameter \texttt{lp} points to, freeing all the memory allocated to this object.
2.3 Problem querying routines

2.3.1 lpx_get_num_rows — determine number of rows

Synopsis

```
#include "glpk.h"
int lpx_get_num_rows(LPX *lp);
```

Returns The routine lpx_get_num_rows returns current number of rows in a problem object, which the parameter lp points to.

2.3.2 lpx_get_num_cols — determine number of columns

Synopsis

```
#include "glpk.h"
int lpx_get_num_cols(LPX *lp);
```

Returns The routine lpx_get_num_cols returns current number of columns in a problem object, which the parameter lp points to.

2.3.3 lpx_get_num_nz — determine number of non-zero constraint coefficients

Synopsis

```
#include "glpk.h"
int lpx_get_num_nz(LPX *lp);
```

Returns The routine lpx_get_num_nz returns current number non-zero elements in the constraint matrix, which is a part of the specified problem object.

2.3.4 lpx_get_prob_name — obtain problem name

Synopsis

```
#include "glpk.h"
char *lpx_get_prob_name(LPX *lp);
```

Returns The routine lpx_get_prob_name returns a pointer to an internal buffer, which contains a symbolic name assigned to the specified problem object. However, if the problem object has no assigned name, the routine returns NULL.
2.3.5 lpx_get_row_name — obtain row name

Synopsis

#include "glpk.h"
char *lpx_get_row_name(LPX *lp, int i);

Returns The routine lpx_get_row_name returns a pointer to an internal buffer, which contains a symbolic name assigned to the i-th row. However, if the row has no assigned name, the routine returns NULL.

2.3.6 lpx_get_col_name — obtain column name

Synopsis

#include "glpk.h"
char *lpx_get_col_name(LPX *lp, int j);

Returns The routine lpx_get_col_name returns a pointer to an internal buffer, which contains a symbolic name assigned to the j-th column. However, if the column has no assigned name, the routine returns NULL.

2.3.7 lpx_get_row_bnds — obtain row bounds

Synopsis

#include "glpk.h"
void lpx_get_row_bnds(LPX *lp, int i, int *typx, double *lb, double *ub);

Description The routine lpx_get_row_bnds stores the type, lower bound and upper bound of the i-th row (auxiliary variable) to locations, which the parameters typx, lb, and ub point to, respectively.

If some of the parameters typx, lb, ub is NULL, the corresponding value is not stored.

Types and bounds have the following meaning:

<table>
<thead>
<tr>
<th>Type</th>
<th>Bounds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_FR</td>
<td>$-\infty < x < +\infty$</td>
<td>Free (unbounded) variable</td>
</tr>
<tr>
<td>LPX_LO</td>
<td>$lb \leq x < +\infty$</td>
<td>Variable with lower bound</td>
</tr>
<tr>
<td>LPX_UP</td>
<td>$-\infty < x \leq ub$</td>
<td>Variable with upper bound</td>
</tr>
<tr>
<td>LPX_DB</td>
<td>$lb \leq x \leq ub$</td>
<td>Double-bounded variable</td>
</tr>
<tr>
<td>LPX_FX</td>
<td>$lb = x = ub$</td>
<td>Fixed variable</td>
</tr>
</tbody>
</table>

where x is an auxiliary variable that corresponds to the i-th row.

If the row has no lower bound, *lb is set to zero. If the row has no upper bound, *ub is set to zero. If the row is an equality constraint (i.e. the corresponding auxiliary variable is of fixed type), *lb and *ub are set to the same value.
2.3.8 \texttt{lpx_get_col_bnds} — obtain column bounds

Synopsis

\begin{verbatim}
#include "glpk.h"
void lpx_get_col_bnds(LPX *lp, int j, int *typx, double *lb, double *ub);
\end{verbatim}

Description The routine \texttt{lpx_get_col_bnds} stores the type, lower bound and upper bound of the j-th column (structural variable) to locations, which the parameters \texttt{typx}, \texttt{lb}, and \texttt{ub} point to, respectively.

If some of the parameters \texttt{typx}, \texttt{lb}, \texttt{ub} is NULL, the corresponding value is not stored.

Types and bounds have the following meaning:

<table>
<thead>
<tr>
<th>Type</th>
<th>Bounds</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_FR</td>
<td>$-\infty < x < +\infty$</td>
<td>Free (unbounded) variable</td>
</tr>
<tr>
<td>LPX_LO</td>
<td>$l_b \leq x < +\infty$</td>
<td>Variable with lower bound</td>
</tr>
<tr>
<td>LPX_UP</td>
<td>$-\infty < x \leq u_b$</td>
<td>Variable with upper bound</td>
</tr>
<tr>
<td>LPX_DB</td>
<td>$l_b \leq x \leq u_b$</td>
<td>Double-bounded variable</td>
</tr>
<tr>
<td>LPX_FX</td>
<td>$l_b = x = u_b$</td>
<td>Fixed variable</td>
</tr>
</tbody>
</table>

where x is a structural variable that corresponds to the j-th column.

If the column has no lower bound, $*lb$ is set to zero. If the column has no upper bound, $*ub$ is set to zero. If the column is of fixed type, $*lb$ and $*ub$ are set to the same value.

2.3.9 \texttt{lpx_get_obj_name} — obtain objective function name

Synopsis

\begin{verbatim}
#include "glpk.h"
char *lpx_get_obj_name(LPX *lp);
\end{verbatim}

Returns The routine \texttt{lpx_get_obj_name} returns a pointer to an internal buffer, which contains a symbolic name assigned to the objective function. However, if the objective function has no assigned name, the routine returns NULL.

2.3.10 \texttt{lpx_get_obj_dir} — determine optimization direction

Synopsis

\begin{verbatim}
#include "glpk.h"
int lpx_get_obj_dir(LPX *lp);
\end{verbatim}

Returns The routine \texttt{lpx_get_obj_dir} returns a flag, which defines the optimization direction (i.e. the sense of the objective function):

- LPX_MIN the objective function should be minimized;
- LPX_MAX the objective function should be maximized.
2.3.11 lpx_get_obj_c0 — obtain constant term of the objective function

Synopsis

```c
#include "glpk.h"
double lpx_get_obj_c0(LPX *lp);
```

Returns The routine `lpx_get_obj_c0` returns a constant term of the objective function for the specified problem object.

2.3.12 lpx_get_row_coef — obtain row objective coefficient

Synopsis

```c
#include "glpk.h"
double lpx_get_row_coef(LPX *lp, int i);
```

Returns The routine `lpx_get_row_coef` returns an objective coefficient at the \textit{i}-th auxiliary variable (row) for the specified problem object.

2.3.13 lpx_get_col_coef — obtain column objective coefficient

Synopsis

```c
#include "glpk.h"
double lpx_get_col_coef(LPX *lp, int j);
```

Returns The routine `lpx_get_col_coef` returns an objective coefficient at the \textit{j}-th structural variable (column) for the specified problem object.

2.3.14 lpx_get_mat_row — obtain row of the constraint matrix

Synopsis

```c
#include "glpk.h"
int lpx_get_mat_row(LPX *lp, int i, int ndx[], double val[]);
```

Description The routine `lpx_get_mat_row` looks through (non-zero) elements of the \textit{i}-th row of the constraint matrix and stores their column indices and values to locations `ndx[1], \ldots, ndx[len]` and `val[1], \ldots, val[len]`, respectively, where `0 \leq len \leq n` is number of elements in the \textit{i}-th row, \(n \) is number of columns. It is allowed to specify `val` as `NULL`, in which case only column indices are stored.

Returns The routine returns `len`, which is number of stored elements (length of the \textit{i}-th row).
2.3.15 lpx_get_mat_col — obtain column of the constraint matrix

Synopsis

#include "glpk.h"
int lpx_get_mat_col(LPX *lp, int j, int ndx[], double val[]);

Description The routine lpx_get_mat_col looks through (non-zero) elements of the j-th column of the constraint matrix and stores their row indices and values to locations ndx[1], ..., ndx[len] and val[1], ..., val[len], respectively, where 0 ≤ len ≤ m is number of elements in the j-th column, m is number of rows. It is allowed to specify val as NULL, in which case only row indices are stored.

Returns The routine returns len, which is number of stored elements (length of the j-th column).

2.3.16 lpx_get_row_mark — determine row mark

Synopsis

#include "glpk.h"
int lpx_get_row_mark(LPX *lp, int i);

Returns The routine lpx_get_row_mark returns an integer mark assigned to the i-th row. Zero means the row is not marked.

2.3.17 lpx_get_col_mark — determine column mark

Synopsis

#include "glpk.h"
int lpx_get_col_mark(LPX *lp, int j);

Returns The routine lpx_get_col_mark returns an integer mark assigned to the j-th column. Zero means the column is not marked.
2.4 Problem scaling routines

2.4.1 lpx_scale_prob — scale problem data

Synopsis

```c
#include "glpk.h"
void lpx_scale_prob(LPX *lp);
```

Description The routine `lpx_scale_prob` performs scaling problem data for the specified problem object.

The purpose of scaling is to replace the original constraint matrix A by the scaled matrix $A' = RAS$, where R and S are diagonal scaling matrices, in the hope that A' has better numerical properties than A.

On API level the scaling effect is almost invisible, since all data entered into the problem object (say, constraint coefficients or bounds of variables) are automatically scaled by API routines using the scaling matrices R and S, and vice versa, all data obtained from the problem object (say, values of variables or reduced costs) are automatically unscaled. However, round-off errors may involve small distortions (of order `DBL_EPSILON`) of the original problem data.

2.4.2 lpx_unscale_prob — unscale problem data

Synopsis

```c
#include "glpk.h"
void lpx_unscale_prob(LPX *lp);
```

The routine `lpx_unscale_prob` performs unscaling problem data for the specified problem object.

“Unscaling” means replacing the current scaling matrices R and S by unity matrices that cancels the scaling effect.
2.5 Basis constructing routines

2.5.1 lpx_std_basis — build standard initial basis

Synopsis

#include "glpk.h"
void lpx_std_basis(LPX *lp);

Description The routine lpx_std_basis builds the “standard” (trivial) initial basis for a problem object, which the parameter lp points to.

In the “standard” basis all auxiliary variables (rows) are basic, and all structural variables (columns) are non-basic, so the corresponding basis matrix is unity.

2.5.2 lpx_adv_basis — build advanced initial basis

Synopsis

#include "glpk.h"
void lpx_adv_basis(LPX *lp);

Description The routine lpx_adv_basis builds an advanced initial basis for a problem object, which the parameter lp points to.

In order to build the advanced initial basis the routine does the following:
1) includes in the basis all non-fixed auxiliary variables;
2) includes in the basis as many as possible non-fixed structural variables preserving triangular form of the basis matrix;
3) includes in the basis appropriate (fixed) auxiliary variables in order to complete the basis.

As a result the initial basis has as few as possible fixed variables and the corresponding basis matrix is (implicitly) triangular.

2.5.3 lpx_set_row_stat — set (change) row status

Synopsis

#include "glpk.h"
void lpx_set_row_stat(LPX *lp, int i, int stat);

Description The routine lpx_set_row_stat sets (changes) the current status of the i-th row (auxiliary variable) as specified by the parameter stat:
LPX_BS make the row basic (make the constraint inactive);
LPX_NL make the row non-basic (make the constraint active);
LPX_NU make the row non-basic and set it to the upper bound; if the row is not
double-bounded, this status is equivalent to LPX_NL (only in the case of this
routine);
LPX_NF the same as LPX_NL (only in the case of this routine);
LPX_NS the same as LPX_NL (only in the case of this routine).

2.5.4 lpx_set_col_stat — set (change) column status

Synopsis

#include "glpk.h"
void lpx_set_col_stat(LPX *lp, int j, int stat);

Description The routine lpx_set_col_stat sets (changes) the current status of the
j-th column (structural variable) as specified by the parameter stat:
 LPX_BS make the column basic;
 LPX_NL make the column non-basic;
 LPX_NU make the column non-basic and set it to the upper bound; if the column is
not of double-bounded type, this status is the same as LPX_NL (only in the
case of this routine);
 LPX_NF the same as LPX_NL (only in the case of this routine);
 LPX_NS the same as LPX_NL (only in the case of this routine).
2.6 Simplex method routines

2.6.1 lpx_warm_up — “warm up” initial basis

Synopsis

#include "glpk.h"
int lpx_warm_up(LPX *lp);

Description The routine lpx_warm_up is intended to “warm up” the initial basis specified by the current statuses of rows (auxiliary variables) and columns (structural variables).

This operation includes (if necessary) reinverting (factorizing) the initial basis matrix, computing the initial basic solution components (values of basic variables, simplex multipliers, reduced costs of non-basic variables), and determining primal and dual statuses of the initial basic solution.

“Warming up” is an optional operation. It can be used before starting optimization in order to obtain basic solution information in the initial point.

Returns The routine lpx_warm_up returns one of the following exit codes:

- LPX_E_OK the initial basis has been successfully “warmed up”.
- LPX_EEMPTY the problem has no rows and/or no columns.
- LPX_E_BADB the initial basis is invalid, because number of basic variables and number of rows are different.
- LPX_E_SING the initial basis matrix is numerically singular or ill-conditioned.

Note that additional exit codes may appear in the future versions of this routine.

2.6.2 lpx_simplex — solve LP problem using the simplex method

Synopsis

#include "glpk.h"
int lpx_simplex(LPX *lp);

Description The routine lpx_simplex is an interface to the LP problem solver based on the two-phase revised simplex method.

This routine obtains problem data from the problem object, which the parameter lp points to, calls the solver to solve the LP problem, and stores the found solution and other relevant information back in the problem object.

Generally, the simplex solver does the following:
- “warming up” the initial basis;
- searching for (primal) feasible basic solution (phase I);
- searching for optimal basic solution (phase II)
- storing the final basis and found basic solution back in the problem object.

Since large scale problems may take a long time, the solver reports some information about the current basic solution, which is sent to the standard output. This information has the following format:
nnn: objval = xxx infeas = yyy (ddd)

where: ‘nnn’ is the iteration number, ‘xxx’ is the current value of the objective function (which is unscaled and has correct sign), ‘yyy’ is the current sum of primal infeasibilities (which is scaled and therefore may be used for visual estimating only), ‘ddd’ is the current number of fixed basic variables. If the asterisk ‘*’ precedes to ‘nnn’, the solver is searching for an optimal solution (phase II), otherwise the solver is searching for a primal feasible solution (phase I).

Note that the simplex solver implemented in GLPK is not perfect. Although it has been successfully tested on a wide set of LP problems, there are hard problems, which can’t be solved by this solver.

Using built-in LP presolver The simplex solver has the *built-in LP presolver*, which is a subprogram that transforms the original LP problem specified in the problem object to an equivalent LP problem, which may be easier for solving with the simplex method than the original one. This is attained mainly due to reducing the problem size and improving its numeric properties (for example, by removing some inactive constraints or by fixing some non-basic variables). Once the transformed LP problem has been solved, the presolver transforms its basic solution back to a corresponding basic solution of the original problem.

Presolving is an optional feature of the routine lpx_simplex, and by default it is not used. In order to use the LP presolver the user should set on the control parameter LPX_K_PRESOL (see Subsection 2.11.6, page 56) before calling the routine lpx_simplex. As a rule presolving is useful when the problem is solved for the first time. However, it is not recommended to use presolving when the problem should be re-optimized.

Presolving procedure is transparent to the API user in the sense that all necessary processing is performed internally, and a basic solution of the original problem recovered by the presolver is the same as if it were computed directly, i.e. without presolving.

Note that the presolver is able to recover only optimal solutions. If a computed solution is infeasible or non-optimal, the corresponding solution of the original problem cannot be recovered and therefore remains undefined. If the user needs to know a basic solution even if it is infeasible or non-optimal, the presolver should not be used.

Returns If the LP presolver is not used (the flag LPX_K_PRESOL is off), the routine lpx_simplex returns one of the following exit codes:

- **LPX_E_OK**: the LP problem has been successfully solved. (Note that, for example, if the problem has no feasible solution, this exit code is reported.)
- **LPX_EFAULT**: unable to start the search because either the problem has no rows/columns, or the initial basis is invalid, or the initial basis matrix is singular or ill-conditioned.
- **LPX_EOBJLL**: the search was prematurely terminated because the objective function being maximized has reached its lower limit and continues decreasing (the dual simplex only).
- **LPX_EOBJUL**: the search was prematurely terminated because the objective function being minimized has reached its upper limit and continues increasing (the dual simplex only).
- **LPX_EITLIM**: the search was prematurely terminated because the simplex iterations limit has been exceeded.
LPX_E_TMLIM the search was prematurely terminated because the time limit has been exceeded.

LPX_E_SING the search was prematurely terminated due to the solver failure (the current basis matrix got singular or ill-conditioned).

If the LP presolver is used (the flag LPX_K_PRESOL is on), the routine `lpx_simplex` returns one of the following exit codes:

- **LPX_E_OK**: optimal solution of the LP problem has been found.
- **LPX_EFAULT**: the LP problem has no rows and/or columns.
- **LPX_ENOPFS**: the LP problem has no primal feasible solution.
- **LPX_ENODFS**: the LP problem has no dual feasible solution.
- **LPX_E_ITLIM**: same as above.
- **LPX_E_TMLIB**: same as above.
- **LPX_E_SING**: same as above.

Note that additional exit codes may appear in the future versions of this routine.
2.7 Basic solution querying routines

2.7.1 lpx_get_status — query basic solution status

Synopsis

#include "glpk.h"
int lpx_get_status(LPX *lp);

Returns The routine lpx_get_status reports the status of the current basic solution obtained for an LP problem object, which the parameter lp points to:

- LPX_OPT solution is optimal;
- LPX_FEAS solution is feasible;
- LPX_INFEAS solution is infeasible;
- LPX_NOFEAS problem has no feasible solution;
- LPX_UNBND problem has unbounded solution;
- LPX_UNDEF solution status is undefined.

More detailed information about the solution status can be obtained using the routines lpx_get_prim_stat and lpx_get_dual_stat.

2.7.2 lpx_get_prim_stat — query primal status of basic solution

Synopsis

#include "glpk.h"
int lpx_get_prim_stat(LPX *lp);

Returns The routine lpx_get_prim_stat reports the primal status of the current basic solution obtained by the solver for an LP problem object, which the parameter lp points to:

- LPX_P_UNDEF the primal status is undefined;
- LPX_P_FEAS the solution is primal feasible;
- LPX_P_INFEAS the solution is primal infeasible;
- LPX_P_NOFEAS no primal feasible solution exists.

2.7.3 lpx_get_dual_stat — query dual status of basic solution

Synopsis

#include "glpk.h"
int lpx_get_dual_stat(LPX *lp);
Returns The routine `lpx_get_dual_stat` reports the dual status of the current basic solution obtained by the solver for an LP problem object, which the parameter `lp` points to:

- `LPX_D_UNDEF` the dual status is undefined;
- `LPX_D_FEAS` the solution is dual feasible;
- `LPX_D_INFEAS` the solution is dual infeasible;
- `LPX_D_NOFEAS` no dual feasible solution exists.

2.7.4 `lpx_get_row_info` — obtain row solution information

Synopsis

```c
#include "glpk.h"
void lpx_get_row_info(LPX *lp, int i, int *tagx, double *vx, double *dx);
```

Description The routine `lpx_get_row_info` stores the current status, primal value, and dual value (reduced cost) of the `i`-th auxiliary variable (row) to locations, which the parameters `tagx`, `vx`, and `dx` point to, respectively.

The status code has the following meaning:

- `LPX_BS` basic variable (non-active constraint);
- `LPX_NL` non-basic variable on its lower bound;
- `LPX_NU` non-basic variable on its upper bound;
- `LPX_NF` non-basic free (unbounded) variable;
- `LPX_NS` non-basic fixed variable.

If some of pointers `tagx`, `vx`, or `dx` is `NULL`, the corresponding value is not stored.

Note that if the primal status of the current basic solution is undefined, the primal value is set to zero. Analogously, if the dual status is undefined, the dual value (reduced cost) is set to zero.

2.7.5 `lpx_get_col_info` — obtain column solution information

Synopsis

```c
#include "glpk.h"
void lpx_get_col_info(LPX *lp, int j, int *tagx, double *vx, double *dx);
```

Description The routine `lpx_get_col_info` stores the current status, primal value, and dual value (reduced cost) of the `j`-th structural variable (column) to locations, which the parameters `tagx`, `vx`, and `dx` point to, respectively.

The status code has the following meaning:

- `LPX_BS` basic variable;
- `LPX_NL` non-basic variable on its lower bound;
- `LPX_NU` non-basic variable on its upper bound;
- `LPX_NF` non-basic free (unbounded) variable;
- `LPX_NS` non-basic fixed variable.
If some of pointers tagx, vx, or dx is NULL, the corresponding value is not stored.

Note that if the primal status of the current basic solution is undefined, the primal value is set to zero. Analogously, if the dual status is undefined, the dual value (reduced cost) is set to zero.

2.7.6 lpx_get_obj_val — obtain value of the objective function

Synopsis

```c
#include "glpk.h"

double lpx_get_obj_val(LPX *lp);
```

Returns The routine lpx_get_obj_val returns the current value of the objective function for an LP problem object, which the parameter lp points to.

Note that if the primal status of the current basic solution is undefined, the routine returns zero.

2.7.7 lpx_check_kkt — check Karush-Kuhn-Tucker conditions

Synopsis

```c
#include "glpk.h"

void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);
```

Description The routine lpx_check_kkt checks Karush-Kuhn-Tucker optimality conditions for the current basic solution specified in an LP problem object, which the parameter lp points to. To use this routine both primal and dual components of the basic solution should be defined.

If the parameter scaled is zero, the optimality conditions are checked for the original, unscaled LP problem. Otherwise, if the parameter scaled is non-zero, the routine checks the conditions for an internally scaled LP problem.

The parameter kkt is a pointer to the structure LPXKKT, to which the routine stores the results of checking. Members of this structure are shown in the table below.

The routine performs all computations using only components of the given LP problem and the current basic solution.

Background The first condition checked by the routine is:

\[x_R - Ax_S = 0, \quad (\text{KKT.PE}) \]

where \(x_R \) is the subvector of auxiliary variables (rows), \(x_S \) is the subvector of structural variables (columns), \(A \) is the constraint matrix. This condition expresses the requirement that all primal variables must satisfy to the system of equality constraints of the original LP problem. In case of exact arithmetic this condition would be satisfied for any basic solution; however, in case of inexact (floating-point) arithmetic, this condition shows how accurate the primal basic solution is, that depends on accuracy of a representation of the basis matrix used by the simplex method routines.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Member</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(KKT.PE)</td>
<td>pe_ae_max</td>
<td>Largest absolute error</td>
</tr>
<tr>
<td></td>
<td>pe_ae_row</td>
<td>Number of row with largest absolute error</td>
</tr>
<tr>
<td></td>
<td>pe_re_max</td>
<td>Largest relative error</td>
</tr>
<tr>
<td></td>
<td>pe_re_row</td>
<td>Number of row with largest relative error</td>
</tr>
<tr>
<td></td>
<td>pe_quality</td>
<td>Quality of primal solution</td>
</tr>
<tr>
<td>(KKT.PB)</td>
<td>pb_ae_max</td>
<td>Largest absolute error</td>
</tr>
<tr>
<td></td>
<td>pb_ae_ind</td>
<td>Number of variable with largest absolute error</td>
</tr>
<tr>
<td></td>
<td>pb_re_max</td>
<td>Largest relative error</td>
</tr>
<tr>
<td></td>
<td>pb_re_ind</td>
<td>Number of variable with largest relative error</td>
</tr>
<tr>
<td></td>
<td>pb_quality</td>
<td>Quality of primal feasibility</td>
</tr>
<tr>
<td>(KKT.DE)</td>
<td>de_ae_max</td>
<td>Largest absolute error</td>
</tr>
<tr>
<td></td>
<td>de_ae_col</td>
<td>Number of column with largest absolute error</td>
</tr>
<tr>
<td></td>
<td>de_re_max</td>
<td>Largest relative error</td>
</tr>
<tr>
<td></td>
<td>de_re_col</td>
<td>Number of column with largest relative error</td>
</tr>
<tr>
<td></td>
<td>de_quality</td>
<td>Quality of dual solution</td>
</tr>
<tr>
<td>(KKT.DB)</td>
<td>db_ae_max</td>
<td>Largest absolute error</td>
</tr>
<tr>
<td></td>
<td>db_ae_ind</td>
<td>Number of variable with largest absolute error</td>
</tr>
<tr>
<td></td>
<td>db_re_max</td>
<td>Largest relative error</td>
</tr>
<tr>
<td></td>
<td>db_re_ind</td>
<td>Number of variable with largest relative error</td>
</tr>
<tr>
<td></td>
<td>db_quality</td>
<td>Quality of dual feasibility</td>
</tr>
</tbody>
</table>

The second condition checked by the routine is:

\[l_k \leq x_k \leq u_k \quad \text{for all } k = 1, \ldots, m+n, \quad \text{(KKT.PB)} \]

where \(x_k \) is auxiliary \((1 \leq k \leq m)\) or structural \((m+1 \leq k \leq m+n)\) variable, \(l_k \) and \(u_k \) are, respectively, lower and upper bounds of the variable \(x_k \) (including cases of infinite bounds). This condition expresses the requirement that all primal variables must satisfy to bound constraints of the original LP problem. Since in case of basic solution all non-basic variables are placed on their bounds, actually the condition (KKT.PB) needs to be checked for basic variables only. If the primal basic solution has sufficient accuracy, this condition shows primal feasibility of the solution.

The third condition checked by the routine is:

\[\text{grad } Z = c = (\hat{A})^T \pi + d, \]

where \(Z \) is the objective function, \(c \) is the vector of objective coefficients, \((\hat{A})^T\) is a matrix transposed to the expanded constraint matrix \(\hat{A} = (I' - A)\), \(\pi\) is a vector of Lagrange multipliers that correspond to equality constraints of the original LP problem, \(d\) is a vector of Lagrange multipliers that correspond to bound constraints for all (auxiliary and structural) variables of the original LP problem. Geometrically the third condition expresses the requirement that the gradient of the objective function must belong to the orthogonal complement of a linear subspace defined by the equality and active bound constraints, i.e. that the gradient must be a linear combination of normals to the constraint planes, where Lagrange multipliers \(\pi\) and \(d\) are coefficients of that linear combination.

To eliminate the vector \(\pi\) the third condition can be rewritten as:

\[(I - A^T) \pi = (d_R \quad c_R) + (d_S \quad c_S). \]
or, equivalently:
\[
\pi + d_R = c_R,
\]
\[
-A^T\pi + d_S = c_S.
\]
Then substituting the vector \(\pi \) from the first equation into the second one we have:
\[
A^T(d_R - c_R) + (d_S - c_S) = 0, \quad (\text{KKT.DE})
\]
where \(d_R \) is the subvector of reduced costs of auxiliary variables (rows), \(d_S \) is the subvector of reduced costs of structural variables (columns), \(c_R \) and \(c_S \) are subvectors of objective coefficients at, respectively, auxiliary and structural variables, \(A^T \) is a matrix transposed to the constraint matrix of the original LP problem. In case of exact arithmetic this condition would be satisfied for any basic solution; however, in case of inexact (floating-point) arithmetic, this condition shows how accurate the dual basic solution is, that depends on accuracy of a representation of the basis matrix used by the simplex method routines.

The last, fourth condition checked by the routine is:
\[
d_k = 0, \quad \text{if } x_k \text{ is basic or free non-basic variable}
\]
\[
0 \leq d_k < +\infty \quad \text{if } x_k \text{ is non-basic on its lower (minimization)}
\]
\[
or upper (maximization) bound}
\]
\[
\infty < d_k \leq 0 \quad \text{if } x_k \text{ is non-basic on its upper (minimization)}
\]
\[
or lower (maximization) bound}
\]
\[
-\infty < d_k < +\infty \quad \text{if } x_k \text{ is non-basic fixed variable}
\]
for all \(k = 1, \ldots, m+n \), where \(d_k \) is a reduced cost (Lagrange multiplier) of auxiliary \((1 \leq k \leq m)\) or structural \((m+1 \leq k \leq m+n)\) variable \(x_k \). Geometrically this condition expresses the requirement that constraints of the original problem must "hold" the point preventing its movement along the anti-gradient (in case of minimization) or the gradient (in case of maximization) of the objective function. Since in case of basic solution reduced costs of all basic variables are placed on their (zero) bounds, actually the condition \((\text{KKT.DB}) \) needs to be checked for non-basic variables only. If the dual basic solution has sufficient accuracy, this condition shows dual feasibility of the solution.

Should note that the complete set of Karush-Kuhn-Tucker optimality conditions also includes the fifth, so called complementary slackness condition, which expresses the requirement that at least either a primal variable \(x_k \) or its dual counterpart \(d_k \) must be on its bound for all \(k = 1, \ldots, m+n \). However, being always satisfied by definition for any basic solution that condition is not checked by the routine.

To check the first condition \((\text{KKT.PE}) \) the routine computes a vector of residuals:
\[
g = x_R - Ax_S,
\]
determines component of this vector that correspond to largest absolute and relative errors:
\[
\text{pe}_\text{ae_max} = \max_{1 \leq i \leq m} |g_i|,
\]
\[
\text{pe}_\text{re_max} = \max_{1 \leq i \leq m} \frac{|g_i|}{1 + |(x_R)_i|},
\]
and stores these quantities and corresponding row indices to the structure \text{LPXKKT}.

To check the second condition \((\text{KKT.PB}) \) the routine computes a vector of residuals:
\[
h_k = \begin{cases}
0, & \text{if } l_k \leq x_k \leq u_k \\
 x_k - l_k, & \text{if } x_k < l_k \\
 x_k - u_k, & \text{if } x_k > u_k
\end{cases}
\]
for all $k = 1, \ldots, m+n$, determines components of this vector that correspond to largest absolute and relative errors:

$$\text{pb_ae_max} = \max_{1 \leq k \leq m+n} |h_k|,$$

$$\text{pb_re_max} = \max_{1 \leq k \leq m+n} \frac{|h_k|}{1 + |x_k|},$$

and stores these quantities and corresponding variable indices to the structure LPXKKT.

To check the third condition (KKT.DE) the routine computes a vector of residuals:

$$u = A^T(d_R - c_R) + (d_S - c_S),$$

determines components of this vector that correspond to largest absolute and relative errors:

$$\text{de_ae_max} = \max_{1 \leq j \leq n} |u_j|,$$

$$\text{de_re_max} = \max_{1 \leq j \leq n} \frac{|u_j|}{1 + |(d_S)_j - (c_S)_j|},$$

and stores these quantities and corresponding column indices to the structure LPXKKT.

To check the fourth condition (KKT.DB) the routine computes a vector of residuals:

$$v_k = \begin{cases} 0, & \text{if } d_k \text{ has correct sign} \\ d_k, & \text{if } d_k \text{ has wrong sign} \end{cases}$$

for all $k = 1, \ldots, m+n$, determines components of this vector that correspond to largest absolute and relative errors:

$$\text{db_ae_max} = \max_{1 \leq k \leq m+n} |v_k|,$$

$$\text{db_re_max} = \max_{1 \leq k \leq m+n} \frac{|v_k|}{1 + |d_k - c_k|},$$

and stores these quantities and corresponding variable indices to the structure LPXKKT.

Using the relative errors for all the four conditions the routine lpx_check_kkt also estimates a "quality" of the basic solution from the standpoint of these conditions and stores corresponding quality indicators to the structure LPXKKT:

- \text{pe_quality} — quality of primal solution;
- \text{pb_quality} — quality of primal feasibility;
- \text{de_quality} — quality of dual solution;
- \text{db_quality} — quality of dual feasibility.

Each of these indicators is assigned to one of the following four values:

- 'H' means high quality,
- 'M' means medium quality,
- 'L' means low quality, or
- '?' means wrong or infeasible solution.

If all the indicators show high or medium quality (for an internally scaled LP problem, i.e. when the parameter \text{scaled} in a call to the routine lpx_check_kkt is non-zero), the user can be sure that the obtained basic solution is quite accurate.

If some of the indicators show low quality, the solution can still be considered as relevant, though an additional analysis is needed depending on which indicator shows low quality.
If the indicator \texttt{pe_quality} is assigned to '?', the primal solution is wrong. If the indicator \texttt{de_quality} is assigned to '?', the dual solution is wrong.

If the indicator \texttt{db_quality} is assigned to '?' while other indicators show a good quality, this means that the current basic solution being primal feasible is not dual feasible. Similarly, if the indicator \texttt{pb_quality} is assigned to '?' while other indicators are not, this means that the current basic solution being dual feasible is not primal feasible.
2.8 Simplex table routines

2.8.1 lpx_eval_tab_row — compute row of the simplex table

Synopsis

#include "glpk.h"
int lpx_eval_tab_row(LPX *lp, int k, int ndx[], double val[]);

Description

The routine lpx_eval_tab_row computes a row of the current simplex table for the basic variable, which is specified by the number k: if 1 ≤ k ≤ m, x_k is k-th auxiliary variable; if m + 1 ≤ k ≤ m + n, x_k is (k - m)-th structural variable, where m is number of rows, and n is number of columns. The current basis must be valid.

The routine stores column indices and numerical values of non-zero elements of the computed row using sparse vector format to the locations ndx[1], ..., ndx[len] and val[1], ..., val[len], respectively, where 0 ≤ len ≤ n is number of non-zeros returned on exit.

Element indices stored in the array ndx have the same sense as the index k, i.e. indices 1 to m denote auxiliary variables and indices m + 1 to m + n denote structural ones (all these variables are obviously non-basic by the definition).

The computed row shows how the specified basic variable x_k = (x_B)_i depends on the non-basic variables:

(x_B)_i = α_{i1}(x_N)_1 + α_{i2}(x_N)_2 + ... + α_{in}(x_N)_n,

where α_{ij} are elements of the simplex table row, (x_N)_j are non-basic (auxiliary and structural) variables.

Even if the problem is (internally) scaled, the routine returns the specified simplex table row as if the problem were unscaled.

Returns

The routine returns number of non-zero elements in the simplex table row stored in the arrays ndx and val.

2.8.2 lpx_eval_tab_col — compute column of the simplex table

Synopsis

#include "glpk.h"
int lpx_eval_tab_col(LPX *lp, int k, int ndx[], double val[]);

Description

The routine lpx_eval_tab_col computes a column of the current simplex table for the non-basic variable, which is specified by the number k: if 1 ≤ k ≤ m, x_k is k-th auxiliary variable; if m + 1 ≤ k ≤ m + n, x_k is (k - m)-th structural variable, where m is number of rows, and n is number of columns. The current basis must be valid.

The routine stores row indices and numerical values of non-zero elements of the computed column using sparse vector format to the locations ndx[1], ..., ndx[len] and
val[1], ..., val[len], respectively, where 0 ≤ len ≤ m is number of non-zeros returned on exit.

Element indices stored in the array ndx have the same sense as the index k, i.e. indices 1 to m denote auxiliary variables and indices m + 1 to m + n denote structural ones (all these variables are obviously non-basic by the definition).

The computed column shows how the basic variables depend on the specified non-basic variable \(x_k = (x_N)_j \):

\[
(x_B)_1 = \cdots + \alpha_{1j}(x_N)_j + \cdots \\
(x_B)_2 = \cdots + \alpha_{2j}(x_N)_j + \cdots \\
\vdots \\
(x_B)_m = \cdots + \alpha_{mj}(x_N)_j + \cdots
\]

where \(\alpha_{ij} \) are elements of the simplex table column, \((x_B)_i\) are basic (auxiliary and structural) variables.

Even if the problem is (internally) scaled, the routine returns the specified simplex table column as if the problem were unscaled.

Returns The routine returns number of non-zero elements in the simplex table column stored in the arrays ndx and val.

2.8.3 lpx_transform_row — transform explicitly specified row

Synopsis

```c
#include "glpk.h"
int lpx_transform_row(LPX *lp, int len, int ndx[], double val[]);
```

Description The routine `lpx_transform_row` performs the same operation as the routine `lpx_eval_tab_row`, except that the transformed row is specified explicitly.

The explicitly specified row may be thought as a linear form

\[
x = a_1x_{m+1} + a_2x_{m+2} + \ldots + a_nx_{m+n},
\]

where \(x \) is an auxiliary variable for this row, \(a_j \) are coefficients of the linear form, \(x_{m+j} \) are structural variables.

On entry column indices and numerical values of non-zero coefficients \(a_j \) of the transformed row should be placed in locations ndx[1], ..., ndx[len] and val[1], ..., val[len], where len is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis in order to express the auxiliary variable \(x \) in (1) through the current non-basic variables (as if the transformed row were added to the problem object and the auxiliary variable \(x \) were basic), i.e. the resultant row has the form:

\[
x = \alpha_1(x_N)_1 + \alpha_2(x_N)_2 + \ldots + \alpha_n(x_N)_n,
\]

where \(\alpha_j \) are influence coefficients, \((x_N)_j\) are non-basic (auxiliary and structural) variables, \(n \) is number of columns in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coefficients \(\alpha_j \) of the resultant row (2) in locations ndx[1], ..., ndx[len'], and val[1], ..., val[len'],
where \(0 \leq \text{len}' \leq n\) is count of non-zero coefficients in the resultant row returned by the routine. Note that indices of non-basic variables stored in the array \(\text{ndx}\) correspond to original ordinal numbers of variables: indices 1 to \(m\) mean auxiliary variables and indices \(m + 1\) to \(m + n\) mean structural ones.

Even if the problem is (internally) scaled, the routine returns the resultant row as if the problem were unscaled.

Returns The routine returns \(\text{len}'\) that is number of non-zero coefficients in the resultant row stored in the arrays \(\text{ndx}\) and \(\text{val}\).

2.8.4 \(\text{lpx_transform_col} \rightleftharpoons \text{transform explicitly specified column}\)**

Synopsis

```c
#include "glpk.h"
int lpx_transform_col(LPX *lp, int len, int ndx[], double val[]);
```

Description The routine \(\text{lpx_transform_col}\) performs the same operation as the routine \(\text{lpx_eval_tab_col}\), except that the transformed column is specified explicitly.

The explicitly specified column may be thought as it were added to the original system of equality constraints:

\[
\begin{align*}
 x_1 & = a_{11}x_{m+1} + \ldots + a_{1n}x_{m+n} + a_1x \\
 x_2 & = a_{21}x_{m+1} + \ldots + a_{2n}x_{m+n} + a_2x \\
 \text{........} \\
 x_m & = a_{m1}x_{m+1} + \ldots + a_{mn}x_{m+n} + a_mx
\end{align*}
\]

(1)

where \(x_i\) are auxiliary variables, \(x_{m+j}\) are structural variables (presented in the problem object), \(x\) is a structural variable for the explicitly specified column, \(a_i\) are constraint coefficients for \(x\).

On entry row indices and numerical values of non-zero coefficients \(a_i\) of the transformed column should be placed in locations \(\text{ndx}[1], \ldots, \text{ndx}[\text{len}]\) and \(\text{val}[1], \ldots, \text{val}[\text{len}]\), where \(\text{len}\) is number of non-zero coefficients.

This routine uses the system of equality constraints and the current basis in order to express the current basic variables through the structural variable \(x\) in (1) (as if the transformed column were added to the problem object and the variable \(x\) were non-basic):

\[
\begin{align*}
 (x_B)_1 & = \ldots + a_1x \\
 (x_B)_2 & = \ldots + a_2x \\
 \text{........} \\
 (x_B)_m & = \ldots + a_mx
\end{align*}
\]

(2)

where \(\alpha_i\) are influence coefficients, \(x_B\) are basic (auxiliary and structural) variables, \(m\) is number of rows in the specified problem object.

On exit the routine stores indices and numerical values of non-zero coefficients \(\alpha_i\) of the resultant column (2) in locations \(\text{ndx}[1], \ldots, \text{ndx}[\text{len}']\) and \(\text{val}[1], \ldots, \text{val}[\text{len}']\), where \(0 \leq \text{len}' \leq m\) is count of non-zero coefficients in the resultant column returned by the routine. Note that indices of basic variables stored in the array \(\text{ndx}\) correspond to
original ordinal numbers of variables, i.e. indices 1 to \(m \) mean auxiliary variables, indices \(m + 1 \) to \(m + n \) mean structural ones.

Even if the problem is (internally) scaled, the routine returns the resultant column as if the problem were unscaled.

Returns The routine returns \(\text{len}' \) that is number of non-zero coefficients in the resultant column stored in the arrays \(\text{ndx} \) and \(\text{val} \).

2.8.5 \text{lpx_prim_ratio_test} — perform primal ratio test

Synopsis

```
#include "glpk.h"
int lpx_prim_ratio_test(LPX *lp, int len, int ndx[], double val[],
    int how, double tol);
```

Description The routine \text{lpx_prim_ratio_test} performs the primal ratio test for an explicitly specified column of the simplex table.

The primal basic solution associated with an LP problem object, which the parameter \(\text{lp} \) points to, should be feasible. No components of the LP problem object are changed by the routine.

The explicitly specified column of the simplex table shows how the basic variables \(x_B \) depend on some non-basic variable \(y \) (which is not necessarily presented in the problem object):

\[
(x_B)_1 = \ldots + \alpha_1 y \\
(x_B)_2 = \ldots + \alpha_2 y \\
\ldots \\
(x_B)_m = \ldots + \alpha_m y
\]

The column (1) is specified on entry to the routine using the sparse format. Ordinal numbers of basic variables \((x_B)_i \) should be placed in locations \(\text{ndx}[1], \ldots, \text{ndx}[\text{len}] \), where ordinal number 1 to \(m \) denote auxiliary variables, and ordinal numbers \(m + 1 \) to \(m + n \) denote structural variables. The corresponding non-zero coefficients \(\alpha_i \) should be placed in locations \(\text{val}[1], \ldots, \text{val}[\text{len}] \). The arrays \(\text{ndx} \) and \(\text{val} \) are not changed by the routine.

The parameter \(\text{how} \) specifies in which direction the variable \(y \) changes on entering the basis: +1 means increasing, -1 means decreasing.

The parameter \(\text{tol} \) is a relative tolerance (small positive number) used by the routine to skip small \(\alpha_i \) in the column (1).

The routine determines the ordinal number of some basic variable (among specified in \(\text{ndx}[1], \ldots, \text{ndx}[\text{len}] \)), which reaches its (lower or upper) bound first before any other basic variables do and which therefore should leave the basis instead the variable \(y \) in order to keep primal feasibility, and returns it on exit. If the choice cannot be made (i.e. if the adjacent basic solution is primal unbounded due to \(y \)), the routine returns zero.

Note If the non-basic variable \(y \) is presented in the LP problem object, the column (1) can be computed using the routine \text{lpx_eval_tab_col}. Otherwise it can be computed using the routine \text{lpx_transform_col}.

Returns The routine `lpx_prim_ratio_test` returns the ordinal number of some basic variable \((x_B)_i\), which should leave the basis instead the variable \(y\) in order to keep primal feasibility. If the adjacent basic solution is primal unbounded and therefore the choice cannot be made, the routine returns zero.

2.8.6 `lpx_dual_ratio_test` — perform dual ratio test

Synopsis

```c
#include "glpk.h"
int lpx_dual_ratio_test(LPX *lp, int len, int ndx[], double val[],
                        int how, double tol);
```

Description The routine `lpx_dual_ratio_test` performs the dual ratio test for an explicitly specified row of the simplex table.

The dual basic solution associated with an LP problem object, which the parameter `lp` points to, should be feasible. No components of the LP problem object are changed by the routine.

The explicitly specified row of the simplex table is a linear form, which shows how some basic variable \(y\) (not necessarily presented in the problem object) depends on non-basic variables \(x_N\):

\[
y = \alpha_1(x_N)_1 + \alpha_2(x_N)_2 + \ldots + \alpha_n(x_N)_n.
\]

(1)

The linear form (1) is specified on entry to the routine using the sparse format. Ordinal numbers of non-basic variables \((x_N)_j\) should be placed in locations `ndx[1]`, \ldots, `ndx[len]`, where ordinal numbers 1 to \(m\) denote auxiliary variables, and ordinal numbers \(m + 1\) to \(m + n\) denote structural variables. The corresponding non-zero coefficients \(\alpha_j\) should be placed in locations `val[1]`, \ldots, `val[len]`. The arrays `ndx` and `val` are not changed by the routine.

The parameter `how` specifies in which direction the variable \(y\) changes on leaving the basis: +1 means increasing, −1 means decreasing.

The parameter `tol` is a relative tolerance (small positive number) used by the routine to skip small \(\alpha_j\) in the form (1).

The routine determines the ordinal number of some non-basic variable (among specified in `ndx[1]`, \ldots, `ndx[len]`), whose reduced cost reaches its (zero) bound first before this happens for any other non-basic variables and which therefore should enter the basis instead the variable \(y\) in order to keep dual feasibility, and returns it on exit. If the choice cannot be made (i.e. if the adjacent basic solution is dual unbounded due to \(y\)), the routine returns zero.

Note If the basic variable \(y\) is presented in the LP problem object, the row (1) can be computed using the routine `lpx_eval_tab_row`. Otherwise it can be computed using the routine `lpx_transform_row`.

Returns The routine `lpx_dual_ratio_test` returns the ordinal number of some non-basic variable \((x_N)_j\), which should enter the basis instead the variable \(y\) in order to keep dual feasibility. If the adjacent basic solution is dual unbounded and therefore the choice cannot be made, the routine returns zero.
2.9 Interior point method routines

2.9.1 lpx_interior — solve LP problem using the interior point method

Synopsis

```c
#include "glpk.h"
int lpx_interior(LPX *lp);
```

Description The routine `lpx_interior` is an interface to the LP problem solver based on the primal-dual interior point method.

This routine obtains problem data from the problem object, which the parameter `lp` points to, calls the solver to solve the LP problem, and stores the found solution back in the problem object.

Interior point methods (also known as barrier methods) are more modern and more powerful numerical methods for large scale linear programming. They especially fit for very sparse LP problems and allow solving such problems much faster than the simplex method.

Solving large LP problems may take a long time, so the routine `lpx_interior` displays information about every interior point iteration\(^1\). This information is sent to the standard output and has the following format:

```
 nnn: F = fff; rpi = ppp; rdi = ddd; gap = ggg
```

where `nnn` is iteration number, `fff` is the current value of the objective function (in the case of maximization it has wrong sign), `ppp` is the current relative primal infeasibility, `ddd` is the current relative dual infeasibility, and `ggg` is the current primal-dual gap.

Should note that currently the GLPK interior point solver doesn't include many important features, in particular:

- it is not able to process dense columns. So if the constraint matrix of the LP problem has dense columns, the solving process will be highly inefficient;
- it has no features against numerical instability. For some LP problems premature termination may happen if the matrix \(ADA^T \) becomes singular or ill-conditioned;
- it computes only primal values of (auxiliary and structural variables) and doesn't compute dual values (i.e. reduced costs), which are just set to zero;
- it is not able to identify optimal basis that corresponds to the found interior point solution.

Returns The routine `lpx_interior` returns one of the following exit codes:

- `LPX_E_OK` the LP problem has been successfully solved (to optimality).
- `LPX_E_FAULT` the solver can’t start the search because either the problem has no rows and/or no columns, or some row has non-zero objective coefficient.
- `LPX_E_NOFEAS` the problem has no feasible (primal or dual) solution.

\(^1\)Unlike the simplex method the interior point method usually needs 30—50 iterations (independently on the problem size) in order to find an optimal solution.
LPX_E_NOCONV the search was prematurely terminated due to very slow convergence or divergence.
LPX_E_ITLIM the search was prematurely terminated because the simplex iterations limit has been exceeded.
LPX_E_INSTAB the search was prematurely terminated due to numerical instability on solving Newtonian system.
Note that additional exit codes may appear in the future versions of this routine.

2.9.2 lpx_get_ips_stat — query status of interior point solution

Synopsis

#include "glpk.h"
int lpx_get_ips_stat(LPX *lp);

Returns The routine lpx_get_ips_stat reports the status of an interior point solution found by the solver for an LP problem object, which the parameter lp points to:
 LPX_T_UNDEF the interior point solution is undefined.
 LPX_T_OPT the interior point solution is optimal.
Note that additional status codes may appear in the future versions of this routine.

2.9.3 lpx_get_ips_row — obtain row interior point solution

Synopsis

#include "glpk.h"
void lpx_get_ips_row(LPX *lp, int i, double *vx, double *dx);

Description The routine lpx_get_ips_row stores primal and dual interior point values for the i-th auxiliary variable (row) to locations, which the parameters vx and dx point to, respectively. If some of the pointers vx or dx is NULL, the corresponding value is not stored.

2.9.4 lpx_get_ips_col — obtain column interior point solution

Synopsis

#include "glpk.h"
void lpx_get_ips_col(LPX *lp, int j, double *vx, double *dx);

Description The routine lpx_get_ips_col stores primal and dual interior point values for the j-th structural variable (column) to locations, which the parameters vx and dx point to, respectively. If some of the pointers vx or dx is NULL, the corresponding value is not stored.
2.9.5 \texttt{lpx_get_ips_obj} — obtain interior point value of the objective function

Synopsis

\begin{verbatim}
#include "glpk.h"

double lpx_get_ips_obj(LPX *lp);
\end{verbatim}

\textbf{Returns} The routine \texttt{lpx_get_ips_obj} returns an interior point value of the objective function.
2.10 MIP routines

2.10.1 lpx_set_class — set (change) problem class

Synopsis

#include "glpk.h"
void lpx_set_class(LPX *lp, int clss);

Description The routine lpx_set_class sets (changes) the class of the problem object as specified by the parameter clss:

- LPX_LP pure linear programming (LP) problem;
- LPX_MIP mixed integer programming (MIP) problem.

2.10.2 lpx_get_class — query problem class

Synopsis

#include "glpk.h"
int lpx_get_class(LPX *lp);

Returns The routine lpx_get_class returns the class of the specified problem object:

- LPX_LP pure linear programming (LP) problem;
- LPX_MIP mixed integer programming (MIP) problem.

2.10.3 lpx_set_col_kind — set (change) column kind

Synopsis

#include "glpk.h"
void lpx_set_col_kind(LPX *lp, int j, int kind);

Description The routine lpx_set_col_kind sets (changes) the kind of the j-th column (structural variable) as specified by the parameter kind:

- LPX_CV continuous variable;
- LPX_IV integer variable.

2.10.4 lpx_get_col_kind — query column kind

Synopsis

#include "glpk.h"
int lpx_get_col_kind(LPX *lp, int j);
Returns The routine lpx_get_col_kind returns the kind of the j-th column (structural variable):

- LPX_CV continuous variable;
- LPX_IV integer variable.

2.10.5 lpx_get_num_int — determine number of integer columns

Synopsis

#include "glpk.h"
int lpx_get_num_int(LPX *lp);

Returns The routine lpx_get_num_int returns number of columns (structural variables) in the problem object, which are marked as integer.

2.10.6 lpx_get_num_bin — determine number of binary columns

Synopsis

#include "glpk.h"
int lpx_get_num_bin(LPX *lp);

Returns The routine lpx_get_num_bin returns number of columns (structural variables) in the problem object, which are marked as integer and have zero lower bound and unity upper bound.

2.10.7 lpx_integer — solve MIP problem using the branch-and-bound method

Synopsis

#include "glpk.h"

Description The routine lpx_integer is an interface to the MIP problem solver based on the branch-and-bound method.

This routine obtains problem data from the problem object, which the parameter lp points to, calls the solver to solve the MIP problem, and stores the found solution and other relevant information back in the problem object.

On entry to this routine the problem object should contain an optimal basic solution for LP relaxation, which can be obtained by means of the simplex-based solver.

Since many MIP problems may take a long time, the solver reports some information about the best known solution, which is sent to the standard output. This information has the following format:

+nyn: mip = xxx; lp = yyy (mmm; nnn)
where ‘nnn’ is the simplex iteration number, ‘xxx’ is a value of the objective function for
the best known integer feasible solution (if no integer feasible solution has been found
yet, ‘xxx’ is the text ‘not found yet’), ‘yyy’ is an optimal value of the objective function
for LP relaxation (this value is not changed during all the search), ‘mmm’ is number of
subproblems in the active list, ‘nnn’ is number of subproblems which have been solved
(considered).

Note that the branch-and-bound solver implemented in GLPK uses easiest heuristics
for branching and backtracking, and therefore it is not perfect. Most probably this solver
can be used for solving MIP problems with one or two hundreds of integer variables. Hard
or very large scale MIP problems can’t be solved by this routine.

Returns The routine lpx_integer returns one of the following exit codes:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_E_OK</td>
<td>the MIP problem has been successfully solved. (Note that, for example, if the problem has no integer feasible solution, this exit code is reported.)</td>
</tr>
<tr>
<td>LPX_EFAULT</td>
<td>unable to start the search because either:</td>
</tr>
<tr>
<td></td>
<td>the problem is not of MIP class, or</td>
</tr>
<tr>
<td></td>
<td>the problem object doesn’t contain optimal solution for LP relaxation, or</td>
</tr>
<tr>
<td></td>
<td>some integer variable has non-integer lower or upper bound, or</td>
</tr>
<tr>
<td></td>
<td>some row has non-zero objective coefficient.</td>
</tr>
<tr>
<td>LPX_E_ITLIM</td>
<td>the search was prematurely terminated because the simplex iterations limit has been exceeded.</td>
</tr>
<tr>
<td>LPX_E_TMLIM</td>
<td>the search was prematurely terminated because the time limit has been exceeded.</td>
</tr>
<tr>
<td>LPX_E_SING</td>
<td>the search was prematurely terminated due to the solver failure (the current basis matrix got singular or ill-conditioned).</td>
</tr>
</tbody>
</table>

Note that additional exit codes may appear in the future versions of this routine.

2.10.8 lpx_get_mip_stat — query status of MIP solution

Synopsis

#include "glpk.h"
int lpx_get_mip_stat(LPX *lp);

Returns The routine lpx_get_mip_stat reports the status of a MIP solution found by
the solver for a MIP problem object, which the parameter lp points to:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_I_UNDEF</td>
<td>the status is undefined (either the problem has not been solved or no integer feasible solution has been found yet).</td>
</tr>
<tr>
<td>LPX_I_OPT</td>
<td>the solution is integer optimal.</td>
</tr>
<tr>
<td>LPX_I_FEAS</td>
<td>the solution is integer feasible but its optimality (or non-optimality) has not been proven, perhaps due to premature termination of the search.</td>
</tr>
<tr>
<td>LPX_I_NOFEAS</td>
<td>the problem has no integer feasible solution (proven by the solver).</td>
</tr>
</tbody>
</table>
2.10.9 \texttt{lpx_get_mip_row} — obtain row activity for MIP solution

Synopsis

\begin{verbatim}
#include "glpk.h"
double lpx_get_mip_row(LPX *lp, int i);
\end{verbatim}

\textbf{Returns} The routine \texttt{lpx_get_mip_row} returns a value of the \textit{i}-th auxiliary variable (row) for a MIP solution contained in the specified problem object.

Note that if the MIP solution is neither integer optimal nor integer feasible, zero is returned.

2.10.10 \texttt{lpx_get_mip_col} — obtain column activity for MIP solution

Synopsis

\begin{verbatim}
#include "glpk.h"
double lpx_get_mip_col(LPX *lp, int j);
\end{verbatim}

\textbf{Returns} The routine \texttt{lpx_get_mip_col} returns a value of the \textit{j}-th structural variable (column) for a MIP solution contained in the specified problem object.

Note that if the MIP solution is neither integer optimal nor integer feasible, zero is returned.

2.10.11 \texttt{lpx_get_mip_obj} — obtain value of the objective function for MIP solution

Synopsis

\begin{verbatim}
#include "glpk.h"
double lpx_get_mip_obj(LPX *lp);
\end{verbatim}

\textbf{Returns} The routine \texttt{lpx_get_mip_obj} returns a value of the objective function for a MIP solution contained in the specified problem object.

Note that if the MIP solution is neither integer optimal nor integer feasible, zero is returned.
2.11 Control parameters and statistics routines

2.11.1 lpx_reset_parms — reset control parameters to default values

Synopsis

#include "glpk.h"
void lpx_reset_parms(LPX *lp);

Description The routine lpx_reset_parms resets all control parameters associated with a problem object, which the parameter lp points to, to their default values.

2.11.2 lpx_set_int_parm — set (change) integer control parameter

Synopsis

#include "glpk.h"
void lpx_set_int_parm(LPX *lp, int parm, int val);

Description The routine lpx_set_int_parm sets (changes) the current value of an integer control parameter parm. The parameter val specifies a new value of the control parameter.

2.11.3 lpx_get_int_parm — query integer control parameter

Synopsis

#include "glpk.h"
int lpx_get_int_parm(LPX *lp, int parm);

Returns The routine lpx_get_int_parm returns the current value of an integer control parameter parm.

2.11.4 lpx_set_real_parm — set (change) real control parameter

Synopsis

#include "glpk.h"
void lpx_set_real_parm(LPX *lp, int parm, double val);

Description The routine lpx_set_real_parm sets (changes) the current value of a real (floating point) control parameter parm. The parameter val specifies a new value of the control parameter.
2.11.5 lpx_get_real_parm — query real control parameter

Synopsis

#include "glpk.h"

double lpx_get_real_parm(LPX *lp, int parm);

Returns The routine lpx_get_real_parm returns the current value of a real (floating point) control parameter parm.

2.11.6 Parameter list

This subsection describes all control parameters currently implemented in the package. Symbolic names of control parameters (which are macros defined in the header file glpk.h) are given on the left. Types, default values, and descriptions are given on the right.

<table>
<thead>
<tr>
<th>Symbolic Name</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_K_MSGLEV</td>
<td>integer</td>
<td>3</td>
<td>Level of messages output by solver routines: 0 — no output, 1 — error messages only, 2 — normal output, 3 — full output (includes informational messages)</td>
</tr>
<tr>
<td>LPX_K_SCALE</td>
<td>integer</td>
<td>3</td>
<td>Scaling option: 0 — no scaling, 1 — equilibration scaling, 2 — geometric mean scaling, then equilibration scaling</td>
</tr>
<tr>
<td>LPX_K_DUAL</td>
<td>integer</td>
<td>0</td>
<td>Dual simplex option: 0 — do not use the dual simplex, 1 — if initial basic solution is dual feasible, use the dual simplex</td>
</tr>
<tr>
<td>LPX_K_PRICE</td>
<td>integer</td>
<td>1</td>
<td>Pricing option (for both primal and dual simplex): 0 — textbook pricing, 1 — steepest edge pricing</td>
</tr>
<tr>
<td>LPX_K_RELAX</td>
<td>real</td>
<td>0.07</td>
<td>Relaxation parameter used in the ratio test. If it is zero, the textbook ratio test is used. If it is non-zero (should be positive), Harris’ two-pass ratio test is used. In the latter case on the first pass of the ratio test basic variables (in the case of primal simplex) or reduced costs of non-basic variables (in the case of dual simplex) are allowed to slightly violate their bounds, but not more than (RELAX · TOLBND) or (RELAX · TOLDJ) (thus, RELAX is a percentage of TOLBND or TOLDJ).</td>
</tr>
<tr>
<td>LPX_K_TOLBND</td>
<td>real</td>
<td>10^-7</td>
<td>Relative tolerance used to check if the current basic solution is primal feasible. (Do not change this parameter without detailed understanding its purpose.)</td>
</tr>
</tbody>
</table>
LPX_K_TOLDJ type: real, default: 10^{-7}
Absolute tolerance used to check if the current basic solution is dual feasible. (Do not change this parameter without detailed understanding its purpose.)

LPX_K_TOLPIV type: real, default: 10^{-9}
Relative tolerance used to choose eligible pivotal elements of the simplex table. (Do not change this parameter without detailed understanding its purpose.)

LPX_K_ROUND type: integer, default: 0
Solution rounding option:
0 — report all primal and dual values “as is”
1 — replace tiny primal and dual values by exact zero

LPX_K_OBJLL type: real, default: $-\text{DBL_MAX}$
Lower limit of the objective function. If on the phase II the objective function reaches this limit and continues decreasing, the solver stops the search. (Used in the dual simplex only.)

LPX_K_OBJUL type: real, default: $+\text{DBL_MAX}$
Upper limit of the objective function. If on the phase II the objective function reaches this limit and continues increasing, the solver stops the search. (Used in the dual simplex only.)

LPX_K_ITLIM type: integer, default: -1
Simplex iterations limit. If this value is positive, it is decreased by one each time when one simplex iteration has been performed, and reaching zero value signals the solver to stop the search. Negative value means no iterations limit.

LPX_K_ITCNT type: integer, initial: 0
Simplex iterations count. This count is increased by one each time when one simplex iteration has been performed.

LPX_K_TMLIM type: real, default: -1.0
Searching time limit, in seconds. If this value is positive, it is decreased each time when one simplex iteration has been performed by the amount of time spent for the iteration, and reaching zero value signals the solver to stop the search. Negative value means no time limit.

LPX_K_OUTFRQ type: integer, default: 200
Output frequency, in iterations. This parameter specifies how frequently the solver sends information about the solution to the standard output.

LPX_K_OUTDLY type: real, default: 0.0
Output delay, in seconds. This parameter specifies how long the solver should delay sending information about the solution to the standard output. Non-positive value means no delay.

LPX_K_BRANCH type: integer, default: 2
Branching heuristic option (for MIP only):
0 — branch on the first variable
1 — branch on the last variable
2 — branch using a heuristic by Driebeck and Tomlin
<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPX_K_BTRACK</td>
<td>integer</td>
<td>2</td>
<td>Backtracking heuristic option (for MIP only):</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 — depth first search</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 — breadth first search</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 — backtrack using the best projection heuristic</td>
</tr>
<tr>
<td>LPX_K_TOLINT</td>
<td>real</td>
<td>10^{-5}</td>
<td>Relative tolerance used to check if the current basic solution is integer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>feasible. (Do not change this parameter without detailed understanding its</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>purpose.)</td>
</tr>
<tr>
<td>LPX_K_TOLOBJ</td>
<td>real</td>
<td>10^{-7}</td>
<td>Relative tolerance used to check if the value of the objective function</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>is not better than in the best known integer feasible solution. (Do not</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>change this parameter without detailed understanding its purpose.)</td>
</tr>
<tr>
<td>LPX_K_MPSINFO</td>
<td>int</td>
<td>1</td>
<td>If this flag is set, the routine <code>lpx_write_mps</code> writes several comment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cards, which contains some information about the problem. Otherwise the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>routine writes no comment cards. This flag also affects the routine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><code>lpx_write_bas</code>.</td>
</tr>
<tr>
<td>LPX_K_MPSOBJ</td>
<td>int</td>
<td>2</td>
<td>This parameter tells the routine <code>lpx_write_mps</code> how to output the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>objective function row:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 — never output objective function row</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 — always output objective function row</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 — output objective function row if the problem has no free rows</td>
</tr>
<tr>
<td>LPX_K_MPSORIG</td>
<td>int</td>
<td>0</td>
<td>If this flag is set, the routine <code>lpx_write_mps</code> uses the original symbolic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>names of rows and columns. Otherwise the routine generates plain names</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>using ordinal numbers of rows and columns. This flag also affects the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>routines <code>lpx_read_bas</code> and <code>lpx_write_bas</code>.</td>
</tr>
<tr>
<td>LPX_K_MPSWIDE</td>
<td>int</td>
<td>1</td>
<td>If this flag is set, the routine <code>lpx_write_mps</code> uses all data fields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Otherwise the routine keeps fields 5 and 6 empty.</td>
</tr>
<tr>
<td>LPX_K_MPSFREE</td>
<td>int</td>
<td>0</td>
<td>If this flag is set, the routine <code>lpx_write_mps</code> omits column and vector</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>names every time when possible (free style). Otherwise the routine outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>all columns.</td>
</tr>
<tr>
<td>LPX_K_MPSSKIP</td>
<td>int</td>
<td>0</td>
<td>If this flag is set, the routine <code>lpx_write_mps</code> skips empty columns (i.e.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>which has no constraint coefficients). Otherwise the routine outputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>all columns.</td>
</tr>
<tr>
<td>LPX_K_LPTORIG</td>
<td>int</td>
<td>0</td>
<td>If this flag is set, the routine <code>lpx_write_lpt</code> uses the original symbolic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>names of rows and columns. Otherwise the routine generates plain names</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>using ordinal numbers of rows and columns.</td>
</tr>
<tr>
<td>LPX_K_PRESOL</td>
<td>int</td>
<td>0</td>
<td>If this flag is set, the routine <code>lpx_simplex</code> solves the problem using</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>the built-in LP presolver. Otherwise the LP presolver is not used.</td>
</tr>
</tbody>
</table>
2.12 Utility routines

2.12.1 `lpx_read_mps` — read problem data in MPS format

Synopsis

```c
#include "glpk.h"
LPX *lpx_read_mps(char *fname);
```

Description The routine `lpx_read_mps` reads LP/MIP problem data in MPS format from a text file whose name is the character string `fname`. (The MPS format is described in Appendix B, page 67.)

Returns If no errors occurred, the routine returns a pointer to the created problem object. Otherwise the routine sends diagnostics to the standard output and returns `NULL`.

2.12.2 `lpx_read_lpt` — read problem data in CPLEX LP format

Synopsis

```c
#include "glpk.h"
LPX *lpx_read_lpt(char *fname);
```

Description The routine `lpx_read_lpt` reads LP/MIP problem data in CPLEX LP format from a text file whose name is the character string `fname`. (The CPLEX LP format is described in Appendix C, page 77.)

Returns If no errors occurred, the routine returns a pointer to the created problem object. Otherwise the routine sends diagnostics to the standard output and returns `NULL`.

2.12.3 `lpx_read_model` — read model written in GNU MathProg modeling language

Synopsis

```c
#include "glpk.h"
LPX *lpx_read_model(char *model, char *data, char *output);
```

Description The routine `lpx_read_model` reads and translates LP/MIP model (problem) written in the GNU MathProg modeling language.\(^2\)

The character string `model` specifies name of input text file, which contains model section and, optionally, data section. This parameter cannot be `NULL`.

The character string `data` specifies name of input text file, which contains data section. This parameter can be `NULL`. (If the data file is specified and the model file also contains data section, that section is ignored and data section from the data file is used.)

\(^2\)The GNU MathProg modeling language is a subset of the AMPL language.
The character string output specifies name of output text file, to which the output produced by display statements is written. If the parameter output is NULL, the display output is sent to stdout via the routine print.

The routine lpx_read_model is an interface to the model translator, which is a program that parses model description and translates it to some internal data structures.

For detailed description of the modeling language see the document “GLPK: Modeling Language GNU MathProg” included in the GLPK distribution.

Returns If no errors occurred, the routine returns a pointer to the created problem object. Otherwise the routine sends diagnostics to the standard output and returns NULL.

2.12.4 lpx_write_mps — write problem data in MPS format

Synopsis

```c
#include "glpk.h"
int lpx_write_mps(LPX *lp, char *fname);
```

Description The routine lpx_write_mps writes data from a problem object, which the parameter lp points to, to an output text file, whose name is the character string fname, in MPS format. (The MPS format is described in Appendix B, page 67.)

Behavior of the routine lpx_write_mps depends on some control parameters (see Subsection 2.11.6, page 56.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.

2.12.5 lpx_write_lpt — write problem data in CPLEX LP format

Synopsis

```c
#include "glpk.h"
int lpx_write_lpt(LPX *lp, char *fname);
```

Description The routine lpx_write_lpt writes data from a problem object, which the parameter lp points to, to an output text file, whose name is the character string fname, in CPLEX LP format. (This format is described in Appendix C, page 77.)

Behavior of the routine lpx_write_lpt depends on some control parameters (see Subsection 2.11.6, page 56.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.
2.12.6 lpx_print_prob — write problem data in plain text format

Synopsis

#include "glpk.h"
int lpx_print_prob(LPX *lp, char *fname);

Description The routine lpx_print_prob writes data from a problem object, which the parameter lp points to, to an output text file, whose name is the character string fname, in plain text format.

Information reported by the routine lpx_print_prob is intended mainly for visual analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.

2.12.7 lpx_read_bas — read predefined basis in MPS format

Synopsis

#include "glpk.h"
int lpx_read_bas(LPX *lp, char *fname);

Description The routine lpx_read_bas reads a predefined basis prepared in MPS format for an LP problem object, which the parameter lp points to, from a text file, whose name is the character string fname. (About this feature of the MPS format see Section B.12, page 75.)

Behavior of the routine lpx_read_bas depends on some control parameters (see Subsection 2.11.6, page 56.)

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.

2.12.8 lpx_write_bas — write current basis in MPS format

Synopsis

#include "glpk.h"
int lpx_write_bas(LPX *lp, char *fname);

Description The routine lpx_write_bas writes the current basis information from a problem object, which the parameter lp points to, to an output text file, whose name is the character string fname, in MPS format. (About this feature of the MPS format see Section B.12, page 75.)

Behavior of the routine lpx_write_bas depends on some control parameters (see Subsection 2.11.6, page 56.)
Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.

2.12.9 lpx_print_sol — write basic solution in printable format

Synopsis

#include "glpk.h"
int lpx_print_sol(LPX *lp, char *fname);

Description The routine lpx_print_sol writes the current basic solution of an LP problem, which is specified by the pointer lp, to a text file, whose name is the character string fname, in printable format.

Information reported by the routine lpx_print_sol is intended mainly for visual analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.

2.12.10 lpx_print_ips — write interior point solution in printable format

Synopsis

#include "glpk.h"
int lpx_print_ips(LPX *lp, char *fname);

Description The routine lpx_print_ips writes the current interior point solution of an LP problem, which the parameter lp points to, to a text file, whose name is the character string fname, in printable format.

Information reported by the routine lpx_print_ips is intended mainly for visual analysis.

Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.

2.12.11 lpx_print_mip — write MIP solution in printable format

Synopsis

#include "glpk.h"
int lpx_print_mip(LPX *lp, char *fname);

Description The routine lpx_print_mip writes a best known integer solution of a MIP problem, which is specified by the pointer lp, to a text file, whose name is the character string fname, in printable format.

Information reported by the routine lpx_print_mip is intended mainly for visual analysis.
Returns If no errors occurred, the routine returns zero. Otherwise the routine prints an error message and returns non-zero.
Appendix A

Installing GLPK on Your Computer

A.1 Obtaining GLPK distribution file

The distribution file for the most recent version of the GLPK package can be downloaded from <ftp://ftp.gnu.org/gnu/glpk/> or from some mirror GNU ftp sites; for details see <http://www.gnu.org/order/ftp.html>.

A.2 Unpacking the distribution file

The GLPK package (like all other GNU software) is distributed in the form of packed archive. This is one file named glpk-x.y.tar.gz, where x is the major version number and y is the minor version number.

In order to prepare the distribution for installation you should:

1. Copy the GLPK distribution file to some subdirectory.

2. Enter the command `gzip -d glpk-x.y.tar.gz` in order to unpack the distribution file. After unpacking the name of the distribution file will be automatically changed to glpk-x.y.tar.

3. Enter the command `tar -x < glpk-x.y.tar` in order to unarchive the distribution. After this operation the subdirectory glpk-x.y, which is the GLPK distribution, will be automatically created.

A.3 Configuring the package

After you have unpacked and unarchived GLPK distribution you should configure the package, i.e. automatically tune it for your computer (platform).

Normally, you should just `cd` to the subdirectory glpk-x.y and enter the command `./configure`. If you are using `csh` on an old version of System V, you might need to type `sh configure` instead to prevent `csh` from trying execute `configure` itself.

The `configure` shell script attempts to guess correct values for various system-dependent variables used during compilation, and creates Makefile. It also creates a file `config.status` that you can run in the future to recreate the current configuration.

Running `configure` takes about a few minutes. While it is running, it displays some informational messages that tell you what it is doing. If you don’t want to see these
A.4 Compiling and checking the package

Normally, in order to compile the package you should just enter the command `make`. This command reads `Makefile` generated by `configure` and automatically performs all necessary job.

The result of compilation is:
- the file `libglpk.a`, which is a library archive that contains object code for all GLPK routines; and
- the program `glpsol`, which is a stand-alone LP/MIP solver.

If you want, you can override the `make` variables `CFLAGS` and `LDFLAGS` like this:

```
make CFLAGS=-O2 LDFLAGS=-s
```

To compile the package in a different directory from the one containing the source code, you must use a version of `make` that supports `VPATH` variable, such as GNU make.

```
cd to the directory where you want the object files and executables to go and run the configure script. configure automatically checks for the source code in the directory that configure is in and in ‘..’. If for some reason configure is not in the source code directory that you are configuring, then it will report that it can't find the source code. In that case, run configure with the option `--srcdir=DIR`, where DIR is the directory that contains the source code.
```

On systems that require unusual options for compilation or linking the package’s `configure` script does not know about, you can give `configure` initial values for variables by setting them in the environment. In Bourne-compatible shells you can do that on the command line like this:

```
CC='gcc -traditional' LIBS=-lposix ./configure
```

Here are the `make` variables that you might want to override with environment variables when running `configure`.

For these variables, any value given in the environment overrides the value that `configure` would choose:
- variable `CC`: C compiler program. The default is `cc`.
- variable `INSTALL`: program to use to install files. The default value is `install` if you have it, otherwise `cp`.

For these variables, any value given in the environment is added to the value that `configure` chooses:
- variable `DEFS`: configuration options, in the form ‘-Dfoo -Dbar ...’.
- variable `LIBS`: libraries to link with, in the form ‘-lfoo -lbar ...’.

In order to check the package (running some tests included in the distribution) you can just enter the command `make check`.

A.5 Installing the package

Normally, in order to install the GLPK package (i.e. copy GLPK library, header files, and the solver to the system places) you should just enter the command `make install` (note that you should be the root user or a superuser).
By default, make install will install the package’s files in the subdirectories
usr/local/bin, usr/local/lib, etc. You can specify an installation prefix other than
/usr/local by giving configure the option --prefix=PATH. Alternately, you can do so
by consistently giving a value for the prefix variable when you run make, e.g.
make prefix=/usr/gnu
make prefix=/usr/gnu install

After installing you can remove the program binaries and object files from the source
directory by typing make clean. To remove all files that configure created (Makefile,
config.status, etc.), just type make distclean.

The file configure.in is used to create configure by a program called autoconf.
You only need it if you want to remake configure using a newer version of autoconf.

A.6 Uninstalling the package

In order to uninstall the GLPK package (i.e. delete all GLPK files from the system places)
you can enter the command make uninstall.
Appendix B

MPS Format

B.1 Prelude

The MPS format\(^1\) is intended for coding LP/MIP problem data. This format assumes the formulation of LP/MIP problem (1.1)–(1.3) (see Section 1.1, page 7).

MPS file is a text file, which contains two types of cards\(^2\): indicator cards and data cards.

Indicator cards determine a kind of succeeding data. Each indicator card has one word in uppercase letters beginning at the column 1.

Data cards contain problem data. Each data card is divided into six fixed fields:

<table>
<thead>
<tr>
<th>Field 1</th>
<th>Field 2</th>
<th>Field 3</th>
<th>Field 4</th>
<th>Field 5</th>
<th>Field 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columns</td>
<td>2—3</td>
<td>5—12</td>
<td>15—22</td>
<td>25—36</td>
<td>40—47</td>
</tr>
<tr>
<td>Contents</td>
<td>Code</td>
<td>Name</td>
<td>Name</td>
<td>Number</td>
<td>Name</td>
</tr>
</tbody>
</table>

On a particular data card some fields may be optional.

Names are used to identify rows, columns, and some vectors (see below).

Aligning the indicator code in the field 1 to the left margin is optional.

All names specified in the fields 2, 3, and 5 should contain from 1 up to 8 arbitrary characters (except control characters). If a name is placed in the field 3 or 5, its first character should not be the dollar sign ‘$’. If a name contains spaces, the spaces are ignored.

All numerical values in the fields 4 and 6 should be coded in the form \(sxxEyyy\), where \(s\) is the plus ‘+’ or the minus ‘-’ sign, \(xx\) is a real number with optional decimal point, \(yy\) is an integer decimal exponent. Any number should contain up to 12 characters. If the sign \(s\) is omitted, the plus sign is assumed. The exponent part is optional. If a number contains spaces, the spaces are ignored.

If a card has the asterisk ‘*’ in the column 1, this card is considered as a comment and ignored. Besides, if the first character in the field 3 or 5 is the dollar sign ‘$’, all characters from the dollar sign to the end of card are considered as a comment and ignored.

\(^1\)The MPS format was developed in 1960’s by IBM as input format for their mathematical programming system MPS/360. Today the MPS format is a most widely used format understood by most mathematical programming packages. This appendix describes only the features of the MPS format, which are implemented in the GLPK package.

\(^2\)In 1960’s MPS file was a deck of 80-column punching cards, so the author decided to keep the word “card”, which may be understood as “line of text file”.

67
MPS file should contain cards in the following order:
- NAME indicator card;
- ROWS indicator card;
- data cards specifying rows (constraints);
- COLUMNS indicator card;
- data cards specifying columns (structural variables) and constraint coefficients;
- RHS indicator card;
- data cards specifying right-hand sides of constraints;
- RANGES indicator card;
- data cards specifying ranges for double-bounded constraints;
- BOUNDS indicator card;
- data cards specifying types and bounds of structural variables;
- ENDDATA indicator card.

Section is a group of cards consisting of an indicator card and data cards succeeding this indicator card. For example, the ROWS section consists of the ROWS indicator card and data cards specifying rows.

The sections RHS, RANGES, and BOUNDS are optional and may be omitted.

B.2 NAME indicator card

The NAME indicator card should be the first card in the MPS file (except optional comment cards, which may precede the NAME card). This card should contain the word NAME in the columns 1—4 and the problem name in the field 3. The problem name is optional and may be omitted.

B.3 ROWS section

The ROWS section should start with the indicator card, which contains the word ROWS in the columns 1—4.

Each data card in the ROWS section specifies one row (constraint) of the problem. All these data cards have the following format.

‘N’ in the field 1 means that the row is free (unbounded):

\[-\infty < x_i = a_{i1}x_{m+1} + a_{i2}x_{m+2} + \ldots + a_{in}x_{m+n} < +\infty;\]

‘L’ in the field 1 means that the row is of “less than or equal to” type:

\[-\infty < x_i = a_{i1}x_{m+1} + a_{i2}x_{m+2} + \ldots + a_{in}x_{m+n} \leq b_i;\]

‘G’ in the field 1 means that the row is of “greater than or equal to” type:

\[b_i \leq x_i = a_{i1}x_{m+1} + a_{i2}x_{m+2} + \ldots + a_{in}x_{m+n} < +\infty;\]

‘E’ in the field 1 means that the row is of “equal to” type:

\[x_i = a_{i1}x_{m+1} + a_{i2}x_{m+2} + \ldots + a_{in}x_{m+n} \leq b_i,\]

where \(b_i\) is a right-hand side. Note that each constraint has a corresponding implicitly defined auxiliary variable (\(x_i\) above), whose value is a value of the corresponding linear form, therefore row bounds can be considered as bounds of such auxiliary variable.
The filed 2 specifies a row name (which is considered as the name of the corresponding auxiliary variable).

The fields 3, 4, 5, and 6 are not used and should be empty.

Numerical values of all non-zero right-hand sides \(b_i \) should be specified in the RHS section (see below). All double-bounded (ranged) constraints should be specified in the RANGES section (see below).

B.4 COLUMNS section

The COLUMNS section should start with the indicator card, which contains the word **COLUMNS** in the columns 1—7.

Each data card in the COLUMNS section specifies one or two constraint coefficients \(a_{ij} \) and also introduces names of columns, i.e. names of structural variables. All these data cards have the following format.

- The field 1 is not used and should be empty.
- The field 2 specifies a column name. If this field is empty, the column name from the immediately preceeding data card is assumed.
- The field 3 specifies a row name defined in the ROWS section.
- The field 4 specifies a numerical value of the constraint coefficient \(a_{ij} \), which is placed in the corresponding row and column.
- The fields 5 and 6 are optional. If they are used, they should contain a second pair “row name—constraint coefficient” for the same column.

Elements of the constraint matrix (i.e. constraint coefficients) should be enumerated in the column wise manner: all elements for the current column should be specified before elements for the next column. However, the order of rows in the COLUMNS section may differ from the order of rows in the ROWS section.

Constraint coefficients not specified in the COLUMNS section are considered as zeros. Therefore zero coefficients may be omitted, although it is allowed to explicitly specify them.

B.5 RHS section

The RHS section should start with the indicator card, which contains the word **RHS** in the columns 1—3.

Each data card in the RHS section specifies one or two right-hand sides \(b_i \) (see Section B.3, page 68). All these data cards have the following format.

- The field 1 is not used and should be empty.
- The field 2 specifies a name of the right-hand side (RHS) vector\(^3\). If this field is empty, the RHS vector name from the immediately preceeding data card is assumed.
- The field 3 specifies a row name defined in the ROWS section.
- The field 4 specifies a right-hand side \(b_i \) for the row, whose name is specified in the field 3. Depending on the row type \(b_i \) is a lower bound (for the row of \(G \) type), an upper bound (for the row of \(L \) type), or a fixed value (for the row of \(E \) type).\(^4\)

\(^3\)This feature allows the user to specify several RHS vectors in the same MPS file. However, before solving the problem a particular RHS vector should be chosen.

\(^4\)If the row is of \(N \) type, \(b_i \) is considered as a constant term of the corresponding linear form. Should note, however, this convention is non-standard.
The fields 5 and 6 are optional. If they are used, they should contain a second pair "row name—right-hand side" for the same RHS vector.

All right-hand sides for the current RHS vector should be specified before right-hand sides for the next RHS vector. However, the order of rows in the RHS section may differ from the order of rows in the ROWS section.

Right-hand sides not specified in the RHS section are considered as zeros. Therefore zero right-hand sides may be omitted, although it is allowed to explicitly specify them.

B.6 RANGES section

The RANGES section should start with the indicator card, which contains the word RANGES in the columns 1—6.

Each data card in the RANGES section specifies one or two ranges for double-side constraints, i.e. for constraints that are of the types L and G at the same time:

$$l_i \leq x_i = a_{i1}x_{m+1} + a_{i2}x_{m+2} + \ldots + a_{in}x_{m+n} \leq u_i,$$

where l_i is a lower bound, u_i is an upper bound. All these data cards have the following format.

The field 1 is not used and should be empty.

The field 2 specifies a name of the range vector\(^5\). If this field is empty, the range vector name from the immediately preceding data card is assumed.

The field 3 specifies a row name defined in the ROWS section.

The field 4 specifies a range value r_i (see the table below) for the row, whose name is specified in the field 3.

The fields 5 and 6 are optional. If they are used, they should contain a second pair "row name—range value" for the same range vector.

All range values for the current range vector should be specified before range values for the next range vector. However, the order of rows in the RANGES section may differ from the order of rows in the ROWS section.

For each double-side constraint specified in the RANGES section its lower and upper bounds are determined as follows:

| Row type | Sign of r_i | Lower bound b_i | Upper bound $b_i + |r_i|$ |
|----------|---------------|-------------------|---------------------------|
| G | + or − | b_i | $b_i + |r_i|$ |
| L | + or − | $b_i - |r_i|$ | b_i |
| E | + | b_i | $b_i + |r_i|$ |
| E | − | $b_i - |r_i|$ | b_i |

where b_i is a right-hand side specified in the RHS section (if b_i is not specified, it is considered as zero), r_i is a range value specified in the RANGES section.

B.7 BOUNDS section

The BOUNDS section should start with the indicator card, which contains the word BOUNDS in the columns 1—6.

\(^5\)This feature allows the user to specify several range vectors in the same MPS file. However, before solving the problem a particular range vector should be chosen.
Each data card in the BOUNDS section specifies one (lower or upper) bound for one structural variable (column). All these data cards have the following format.

The indicator in the field 1 specifies the bound type:
- **LO** lower bound;
- **UP** upper bound;
- **FX** fixed variable (lower and upper bounds are equal);
- **FR** free variable (no bounds);
- **MI** no lower bound (lower bound is “minus infinity”);
- **PL** no upper bound (upper bound is “plus infinity”);

The field 2 specifies a name of the bound vector\(^6\). If this field is empty, the bound vector name from the immediately preceding data card is assumed.

The field 3 specifies a column name defined in the COLUMNS section.

The field 4 specifies a bound value. If the bound type in the field 1 differs from **LO**, **UP** , and **FX**, the value in the field 4 is ignored and may be omitted.

The fields 5 and 6 are not used and should be empty.

All bound values for the current bound vector should be specified before bound values for the next bound vector. However, the order of columns in the BOUNDS section may differ from the order of columns in the COLUMNS section. Specification of a lower bound should precede specification of an upper bound for the same column (if both the lower and upper bounds are explicitly specified).

By default, all columns (structural variables) are non-negative, i.e., have zero lower bound and no upper bound. Lower \((l_j)\) and upper \((u_j)\) bounds of some column (structural variable \(x_j\)) are set in the following way, where \(s_j\) is a corresponding bound value explicitly specified in the BOUNDS section:
- **LO** sets \(l_j\) to \(s_j\);
- **UP** sets \(u_j\) to \(s_j\);
- **FX** sets both \(l_j\) and \(u_j\) to \(s_j\);
- **FR** sets \(l_j\) to \(-\infty\) and \(u_j\) to \(+\infty\);
- **MI** sets \(l_j\) to \(-\infty\);
- **PL** sets \(u_j\) to \(+\infty\).

B.8 ENDATA indicator card

The ENDATA indicator card should be the last card of MPS file (except optional comment cards, which may follow the ENDATA card). This card should contain the word **ENDATA** in the columns 1—6.

B.9 Specifying objective function

It is impossible to explicitly specify the objective function and optimization direction in the MPS file. However, the following implicit rule is used by default: the first row of \(N\) type is considered as a row of the objective function (i.e., the objective function is the corresponding auxiliary variable), which should be \textit{minimized}.

GLPK also allows specifying a constant term of the objective function as a right-hand side of the corresponding row in the RHS section.

\(^6\)This feature allows the user to specify several bound vectors in the same MPS file. However, before solving the problem a particular bound vector should be chosen.
B.10 Example of MPS file

In order to illustrate what the MPS format is, consider the following example of LP problem:

minimize

\[
value = .03 \ bin_1 + .08 \ bin_2 + .17 \ bin_3 + .12 \ bin_4 + .15 \ bin_5 + .21 \ alum + .38 \ silicon
\]

subject to linear constraints

\[
yield = bin_1 + bin_2 + bin_3 + bin_4 + bin_5 + alum + silicon
fe = .15 \ bin_1 + .04 \ bin_2 + .02 \ bin_3 + .04 \ bin_4 + .02 \ bin_5 + .01 \ alum + .03 \ silicon
\]

\[
cu = .03 \ bin_1 + .05 \ bin_2 + .08 \ bin_3 + .02 \ bin_4 + .06 \ bin_5 + .01 \ alum
\]

\[
mn = .02 \ bin_1 + .04 \ bin_2 + .01 \ bin_3 + .02 \ bin_4 + .02 \ bin_5
mg = .02 \ bin_1 + .03 \ bin_2 + .01 \ bin_3
\]

\[
al = .70 \ bin_1 + .75 \ bin_2 + .80 \ bin_3 + .75 \ bin_4 + .80 \ bin_5 + .97 \ alum
si = .02 \ bin_1 + .06 \ bin_2 + .08 \ bin_3 + .12 \ bin_4 + .02 \ bin_5 + .01 \ alum + .97 \ silicon
\]

and bounds of (auxiliary and structural) variables

\[
yield = 2000 \quad 0 \leq bin_1 \leq 200
-\infty < fe \leq 60 \quad 0 \leq bin_2 \leq 2500
-\infty < cu \leq 100 \quad 400 \leq bin_3 \leq 800
-\infty < mn \leq 40 \quad 100 \leq bin_4 \leq 700
-\infty < mg \leq 30 \quad 0 \leq bin_5 \leq 1500
1500 \leq al < +\infty \quad 0 \leq alum < +\infty
250 \leq si \leq 300 \quad 0 \leq silicon < +\infty
\]

A complete MPS file which specifies data for this example is shown below (the first two comment lines show card positions).

*000000001111111122222222223333333334444444444555555555566
*234567890123456789012345678901234567890123456789012345678901
NAME PLAN
ROWS
N VALUE
E YIELD
L FE
L CU
L MN
L MG
G AL
L SI
COLUMNS
BIN1 VALUE .03000 YIELD 1.00000
FE .15000 CU .03000
MN .02000 MG .02000
AL .70000 SI .02000
BIN2 VALUE .08000 YIELD 1.00000
FE .04000 CU .05000
B.11 MIP features

The MPS format provides two ways for introducing integer variables into the problem. The first way is most general and based on using special marker cards INTORG and INTEND. These marker cards are placed in the COLUMNS section. The INTORG card indicates the start of a group of integer variables (columns), and the card INTEND indicates the end of the group. The MPS file may contain arbitrary number of the marker cards.

The marker cards have the same format as the data cards (see Section B.1, page 67). The fields 1, 2, and 6 are not used and should be empty. The field 2 should contain a marker name. This name may be arbitrary. The field 3 should contain the word ‘MARKER’ (including apostrophes).
The field 5 should contain either the word ‘INTORG’ (including apostrophes) for the marker card, which begins a group of integer columns, or the word ‘INTEND’ (including apostrophes) for the marker card, which ends the group.

The second way is less general but more convenient in some cases. It allows the user to declare integer columns using two additional types of bounds, which are specified in the field 1 of data cards in the BOUNDS section (see Section B.7, page 70):

- **UI** upper integer. This bound type specifies that the corresponding column (structural variable), whose name is specified in the field 3, is of integer kind. In this case an upper bound of the column should be specified in the field 4 (like in the case of **UP** bound type).
- **BV** binary variable. This bound type specifies that the corresponding column (structural variable), whose name is specified in the field 3, is of integer kind, its lower bound is zero, and its upper bound is one (thus, such variable being of integer kind can have only two values zero and one). In this case a numeric value specified in the field 4 is ignored and may be omitted.

Consider the following example of MIP problem:

```
minimize
Z = 3x1 + 7x2 − x3 + x4

subject to linear constraints
r1 = 2x1 − x2 + x3 − x4
r2 = x1 − x2 − 6x3 + 4x4
r3 = 5x1 + 3x2 + x4

and bound of variables
1 ≤ r1 < +∞ 0 ≤ x1 ≤ 4 (continuous)
8 ≤ r2 < +∞ 2 ≤ x2 ≤ 5 (integer)
5 ≤ r3 < +∞ 0 ≤ x3 ≤ 1 (integer)
3 ≤ x4 ≤ 8 (continuous)
```

The corresponding MPS file may look like the following:

```
NAME SAMP1
ROWS
N Z
G R1
G R2
G R3
COLUMNS
X1  R1  2.0  R2  1.0
X1  R3  5.0  Z   3.0
MARK0001 'MARKER' 'INTORG'
X2  R1  -1.0 R2  -1.0
X2  R3  3.0  Z   7.0
X3  R1  1.0  R2  -6.0
X3  Z   -1.0
MARK0002 'MARKER' 'INTEND'
X4  R1  -1.0 R2  4.0
```
The same example may be coded without INTORG/INTEND markers using the bound type UI for the variable \(x_2\) and the bound type BV for the variable \(x_3\):

```
NAME SAMP2
ROWS
N Z
G R1
G R2
G R3
COLUMNS
  X1  R1  2.0  R2  1.0
  X1  R3  5.0  Z  3.0
  X2  R1 -1.0  R2 -1.0
  X2  R3  3.0  Z  7.0
  X3  R1  1.0  R2 -6.0
  X3  Z  -1.0
  X4  R1 -1.0  R2  4.0
  X4  R3  1.0  Z  1.0
RHS
RHS1  R1  1.0
RHS1  R2  8.0
RHS1  R3  5.0
BOUNDS
UP BND1 X1  4.0
LO BND1 X2  2.0
UP BND1 X2  5.0
UP BND1 X3  1.0
LO BND1 X4  3.0
UP BND1 X4  8.0
ENDATA
```

B.12 Specifying predefined basis

The MPS format can also be used to specify some predefined basis for an LP problem, i.e. to specify which rows and columns are basic and which are non-basic.
The order of a basis file in the MPS format is:
- NAME indicator card;
- data cards (can appear in arbitrary order);
- ENDATA indicator card.

Each data card specifies either a pair "basic column—non-basic row" or a non-basic column. All the data cards have the following format.

‘XL’ in the field 1 means that a column, whose name is given in the field 2, is basic, and a row, whose name is given in the field 3, is non-basic and placed on its lower bound.

‘XU’ in the field 1 means that a column, whose name is given in the field 2, is basic, and a row, whose name is given in the field 3, is non-basic and placed on its upper bound.

‘LL’ in the field 1 means that a column, whose name is given in the field 3, is non-basic and placed on its lower bound.

‘UL’ in the field 1 means that a column, whose name is given in the field 3, is non-basic and placed on its upper bound.

The field 2 contains a column name.

If the indicator given in the field 1 is ‘XL’ or ‘XU’, the field 3 contains a row name. Otherwise, if the indicator is ‘LL’ or ‘UL’, the field 3 is not used and should be empty.

The field 4, 5, and 6 are not used and should be empty.

A basis file in the MPS format acts like a patch: it doesn’t specify a basis completely, instead that it just shows in what a given basis differs from the "standard" basis, where all rows (auxiliary variables) are assumed to be basic and all columns (structural variables) are assumed to be non-basic.

As an example here is a basis file that specifies an optimal basis for the example LP problem given in Section B.10, Page 72:

```
*000000001111111111222222223333333344444444555555555566
*234567890123456789012345678901234567890123456789012345678901
NAME PLAN
 XL BIN2 YIELD
 XL BIN3 FE
 XL BIN4 MN
 XL ALUM AL
 XL SILICON SI
 LL BIN1
 LL BIN5
ENDATA
```
Appendix C

CPLEX LP Format

C.1 Prelude

The CPLEX LP format\(^1\) is intended for coding LP/MIP problem data. It is a row-oriented format that assumes the formulation of LP/MIP problem (1.1)—(1.3) (see Section 1.1, page 7).

CPLEX LP file is a plain text file coded using the CPLEX LP format. Each text line of this file may contain up to 255 characters. Blank lines are ignored. If a line contains the backslash character (\), this character and anything that follows it until the end of line are considered as a comment and also ignored.

An LP file is coded by the user using the following elements:

- keywords;
- symbolic names;
- numeric constants;
- delimiters;
- blanks.

Keywords that may be used in the LP file are the following:

\begin{align*}
\text{minimize} & \quad \text{minimum} & \quad \text{min} \\
\text{maximize} & \quad \text{maximum} & \quad \text{max} \\
\text{subject to} & \quad \text{such that} & \quad \text{s.t.} & \quad \text{st} \\
\text{bounds} & \quad \text{bound} \\
\text{general} & \quad \text{generals} & \quad \text{gen} \\
\text{integer} & \quad \text{integers} & \quad \text{int} \\
\text{binary} & \quad \text{binaries} & \quad \text{bin} \\
\text{infinity} & \quad \text{inf} \\
\text{free} & \quad \text{free} & \quad \text{end}
\end{align*}

All the keywords are case insensitive. Keywords given above on the same line are equivalent. Any keyword (except \text{infinity}, \text{inf}, and \text{free}) being used in the LP file must start at the beginning of a text line.

\(^1\)The CPLEX LP format was developed in the end of 1980’s by CPLEX Optimization, Inc. as an input format for the CPLEX linear programming system. Although the CPLEX LP format is not as widely used as the MPS format, being row-oriented it is more convenient for coding mathematical programming models by human. This appendix describes only the features of the CPLEX LP format which are implemented in the GLPK package.
Symbolic names are used to identify the objective function, constraints (rows), and variables (columns). All symbolic names are case sensitive and may contain up to 16 alphanumeric characters (a, . . . , z, A, . . . , Z, 0, . . . , 9) as well as the following characters:

! " # $ % & () / , . ; ? @ _ ' ' { } | ~

(except that no symbolic name can begin with a digit or a period). If a symbolic name is longer than 16 characters, it is truncated from the right.

Numeric constants are used to denote constraint and objective coefficients, right-hand sides of constraints, and bounds of variables. They are coded in the standard form $xx\times yy$, where xx is a real number with optional decimal point, s is a sign (+ or -), yy is an integer decimal exponent. Numeric constants may contain arbitrary number of characters. The exponent part is optional. The letter ‘E’ can be coded as ‘e’. If the sign s is omitted, plus is assumed.

Delimiters that may be used in the LP file are the following:

: + - < <= =< > >= => =

Delimiters given above on the same line are equivalent. The meaning of the delimiters will be explained below.

Blanks are non-significant characters. They may be used freely to improve readability of the LP file. Besides, blanks should be used to separate elements from each other if there is no other way to do that (for example, to separate a keyword from a following symbolic name).

The order of an LP file is:
• objective function definition;
• constraints section;
• bounds section;
• general, integer, and binary sections (can appear in arbitrary order);
• end keyword.

These components are discussed in following sections.

C.2 Objective function definition

The objective function definition must appear first in the LP file. It defines the objective function and specifies the optimization direction.

The objective function definition has the following form:

\[
\begin{align*}
\text{minimize} & \quad \{ f : s c x s c x \ldots s c x \} \\
\text{maximize} & \quad \{ f : s c x s c x \ldots s c x \}
\end{align*}
\]

where f is a symbolic name of the objective function, s is a sign + or -, c is a numeric constant that denotes an objective coefficient, x is a symbolic name of a variable.
If necessary, the objective function definition can be continued on as many text lines as desired.

The name of the objective function is optional and may be omitted (together with the semicolon that follows it). In this case the default name ‘obj’ is assigned to the objective function.

If the very first sign s is omitted, the sign plus is assumed. Other signs cannot be omitted.

If some objective coefficient c is omitted, 1 is assumed.
Symbolic names x used to denote variables are recognized by context and therefore needn’t to be declared somewhere else.

Here is an example of the objective function definition:

$$\text{Minimize } Z : -x_1 + 2x_2 - 3.5x_3 + 4.997e3x(4) + x_5 + x_6 + x_7 - .01x_8$$

C.3 Constraints section

The constraints section must follow the objective function definition. It defines a system of equality and/or inequality constraints.

The constraint section has the following form:

\[
\text{subject to} \\
constraint_1 \\
constraint_2 \\
\ldots \\
constraint_m
\]

where $constraint_i, i = 1, \ldots, m$, is a particular constraint definition.

Each constraint definition can be continued on as many text lines as desired. However, each constraint definition must begin on a new line except the very first constraint definition which can begin on the same line as the keyword ‘subject to’.

Constraint definitions have the following form:

\[
r : s \ c \ x \ s \ c \ x \ldots \ s \ c \ x \begin{cases} <= \\ >= \\ = \end{cases} b
\]

where r is a symbolic name of a constraint, s is a sign $+$ or $-$, c is a numeric constant that denotes a constraint coefficient, x is a symbolic name of a variable, b is a right-hand side.

The name r of a constraint (which is the name of the corresponding auxiliary variable) is optional and may be omitted (together with the semicolon that follows it). In this case the default names like ‘r.mnn’ are assigned to unnamed constraints.

The linear form $s \ c \ x \ s \ c \ x \ldots \ s \ c \ x$ in the left-hand side of a constraint definition has exactly the same meaning as in the case of the objective function definition (see above).

After the linear form one of the following delimiters that indicate the constraint sense must be specified:

- $<=$ means ‘less than or equal to’
- $=>$ means ‘greater than or equal to’
- $=$ means ‘equal to’
The right hand side b is a numeric constant with an optional sign.

Here is an example of the constraints section:

Subject To

one: $y_1 + 3a_1 - a_2 - b \geq 1.5$
$y_2 + 2a_3 + 2a_4 - b \geq -1.5$

two: $y_4 + 3a_1 + 4a_5 - b \leq +1$
$.20y_5 + 5a_2 - b = 0$
$1.7y_6 - a_6 + 5a_777 - b \geq 1$

(Should note that it is impossible to express ranged constraints in the CPLEX LP format. Each a ranged constraint can be coded as two constraints with identical linear forms in the left-hand side, one of which specifies a lower bound and other does an upper one of the original ranged constraint.)

C.4 Bounds section

The bounds section is intended to define bounds of variables. This section is optional; if it is specified, it must follow the constraints section. If the bound section is omitted, all variables are assumed to be non-negative (i.e. that they have zero lower bound and no upper bound).

The bounds section has the following form:

```
bounds
    definition_1
    definition_2
    ...
    definition_p
```

where $definition_k, k = 1, \ldots, p,$ is a particular bound definition.

Each bound definition must begin on a new line\(^2\) except the very first bound definition which can begin on the same line as the keyword `bounds`.

Syntactically constraint definitions can have one of the following six forms:

- $x \geq l$ specifies a lower bound
- $l \leq x$ specifies a lower bound
- $x \leq u$ specifies an upper bound
- $l \leq x \leq u$ specifies both lower and upper bounds
- $x = t$ specifies a fixed value
- x free specifies free variable

where x is a symbolic name of a variable, l is a numeric constant with an optional sign that defines a lower bound of the variable or `-inf` that means that the variable has no lower bound, u is a numeric constant with an optional sign that defines an upper bound of the variable or `+inf` that means that the variable has no upper bound, t is a numeric constant with an optional sign that defines a fixed value of the variable.

\(^2\)The GLPK implementation allows several bound definitions to be placed on the same line.
By default all variables are non-negative, i.e. have zero lower bound and no upper bound. Therefore definitions of these default bounds can be omitted in the bounds section.

Here is an example of the bounds section:

```
Bounds
-\infty \leq a1 \leq 100
-100 \leq a2
b \leq 100
x2 = +123.456
x3 free
```

C.5 General, integer, and binary sections

The general, integer, and binary sections are intended to define some variables as integer or binary. All these sections are optional and needed only in case of MIP problems. If they are specified, they must follow the bounds section or, if the latter is omitted, the constraints section.

All the general, integer, and binary sections have the same form as follows:

```
{general}
{integer}
{binary}
\begin{align*}
x_1 \\
x_2 \\
\vdots \\
x_q
\end{align*}
```

where x_k is a symbolic name of variable, $k = 1, \ldots, q$.

Each symbolic name must begin on a new line\(^3\) except the very first symbolic name which can begin on the same line as the keyword ‘general’, ‘integer’, or ‘binary’.

If a variable appears in the general or the integer section, it is assumed to be general integer variable. If a variable appears in the binary section, it is assumed to be binary variable, i.e. an integer variable whose lower bound is zero and upper bound is one. (Note that if bounds of a variable are specified in the bounds section and then the variable appears in the binary section, its previously specified bounds are ignored.)

Here is an example of the integer section:

```
Integer
z12
z22
z35
```

C.6 End keyword

The keyword ‘end’ is intended to end the LP file. It must begin on a separate line and no other elements (except comments and blank lines) must follow it. Although this keyword is optional, it is strongly recommended to include it in the LP file.

\(^3\)The GLPK implementation allows several symbolic names to be placed on the same line.
C.7 Example of CPLEX LP file

Here is a complete example of CPLEX LP file that corresponds to the example given in Section B.10, page 72.

* plan.lpt *

Minimize

value: .03 bin1 + .08 bin2 + .17 bin3 + .12 bin4 + .15 bin5 + .21 alum + .38 silicon

Subject To

yield: bin1 + bin2 + bin3 + bin4 + bin5 + alum + silicon = 2000

fe: .15 bin1 + .04 bin2 + .02 bin3 + .04 bin4 + .02 bin5 + .01 alum + .03 silicon <= 60

cu: .03 bin1 + .05 bin2 + .08 bin3 + .02 bin4 + .06 bin5 + .01 alum <= 100

mn: .02 bin1 + .04 bin2 + .01 bin3 + .02 bin4 + .02 bin5 <= 40

mg: .02 bin1 + .03 bin2 + .01 bin5 <= 30

al: .70 bin1 + .75 bin2 + .80 bin3 + .75 bin4 + .80 bin5 + .97 alum >= 1500

si1: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 + .01 alum + .97 silicon >= 250

si2: .02 bin1 + .06 bin2 + .08 bin3 + .12 bin4 + .02 bin5 + .01 alum + .97 silicon <= 300

Bounds

bin1 <= 200
bin2 <= 2500
400 <= bin3 <= 800
100 <= bin4 <= 700
bin5 <= 1500

End

* eof *\
Appendix D

Stand-alone LP/MIP Solver

The GLPK package includes the program glpsol which is a stand-alone LP/MIP solver. This program can be invoked from the command line or from the shell to read LP/MIP problem data in any format supported by GLPK, solve the problem, and write the obtained problem solution to a text file in plain format.

Usage

glpsol [options...] [filename]

General options

--mps read LP/MIP problem in MPS format (default)
--lpt read LP/MIP problem in CPLEX LP format
--math read LP/MIP model written in GNU MathProg modeling language
-m filename, --model filename
 read model section and optional data section from filename (the same as --math)
-d filename, --data filename
 read data section from filename (for --math only); if model file also has data section, that section is ignored
-y filename, --display filename
 send display output to filename (for --math only); by default the output is sent to stdout
--min minimization
--max maximization
--scale scale problem (default)
--noscale do not scale problem
--simplex use simplex method (default)
--interior use interior point method (for pure LP only)
-o filename, --output filename
 write solution to filename in plain text format
--tmlim nnn limit solution time to nnn seconds (--tmlim 0 allows obtaining solution at initial point)
--check do not solve problem, check input data only
--plain use plain names of rows and columns (default)
try using original names of rows and columns
write problem to filename in MPS format
write problem to filename in CPLEX LP format
write problem to filename in plain text format
display this help information and exit
display program version and exit

Options specific to simplex method

use standard initial basis of all slacks
use advanced initial basis (default)
use steepest edge technique (default)
use standard “textbook” pricing
use Harris’ two-pass ratio test (default)
use standard “textbook” ratio test
use LP presolver (default; assumes --scale and --adv)
do not use LP presolver

Options specific to MIP

consider all integer variables as continuous (allows solving MIP as pure LP)
branch on first integer variable
branch on last integer variable
branch using heuristic by Driebeck and Tomlin (default)
backtrack using depth first search
backtrack using breadth first search
backtrack using the best projection heuristic (default)

For description of the MPS format see Appendix B, page 67.

For description of the CPLEX LP format see Appendix C, page 77.

For description of the modeling language see the document “GLPK: Modeling Language GNU MathProg” included in the GLPK distribution.