Dijkstra’s Algorithm [1959]

Dijkstra’s Algorithm

Input: A digraph $G = (V, A)$ with nonnegative arc costs, starting node r

Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1. Initialize y, p.
2. Set $S := V$.
3. While $S \neq \emptyset$:
 - Choose $v \in S$ with y_v minimum.
 - Set $S := S \setminus \{v\}$.
 - Scan vertex v, i.e., do for all arcs $(v, w) \in A$:
 - If (v, w) is incorrect, then correct it, updating predecessor information.
Dijkstra’s Algorithm: Correctness

- We use the notation v_1, v_2, \ldots, v_n for the ordering of the nodes
- We denote by $y^{(i)}$ the value of y at the point when v_i is chosen to be scanned.

Lemma (Monotonicity of potentials of scanned nodes)

For all $i < k$ we have $y^{(i)}_{v_i} \leq y^{(k)}_{v_k}$.

Proof.

- Suppose the contrary, i.e., there exist $i < k$ with $y^{(i)}_{v_i} > y^{(k)}_{v_k}$.
- Fix such a i and choose k minimal with this property, i.e., v_k is the earliest-chosen vertex after v_i that, at the time of its scanning, had a smaller potential than the vertex v_i at the time of its scanning.
- But by the minimal choice in the algorithm, we have $y^{(i)}_{v_i} \leq y^{(k)}_{v_k}$.
- So y_{v_k} must have been lowered while scanning some vertex v_j with $i < j < k$.
- This arc correction made $y^{(k)}_{v_k} = y^{(j+1)}_{v_k} = y^{(j)}_{v_j} + c_{v_j,v_k}$.
- Because $c_{v_j,v_k} \geq 0$, we have $y^{(j)}_{v_j} \leq y^{(k)}_{v_k} < y^{(i)}_{v_i}$.
- This is a contradiction to the definition of k.
Dijkstra’s Algorithm: Correctness, II

Theorem

Dijkstra’s Algorithm is correct.

Proof.

We prove that, after all vertices have been scanned, we have a feasible potential y^{n+1}:

- Suppose not, i.e., for some $(v_i, v_k) \in A$, we have $y_{v_i}^{(n+1)} + c_{v_i,v_k} < y_{v_k}^{(n+1)}$.
- But directly after scanning vertex v_i, we certainly did have $y_{v_i}^{(i+1)} + c_{v_i,v_k} \geq y_{v_k}^{(i+1)}$.
- Since we never increase the potentials, y_{v_i} must have been lowered afterwards! Say, it was lowered the last time when scanning vertex v_j (with $i < j$).

Thus $y_{v_i}^{(i+1)} > y_{v_i}^{(n+1)} = y_{v_i}^{(j+1)} = y_{v_j}^{(j)} + c_{v_j,v_i} \geq y_{v_j}^{(j)}$

On the other hand, by the Lemma, because v_j was scanned after v_i, we have $y_{v_j}^{(j)} \geq y_{v_i}^{(j)}$, a contradiction ($y_{v_i}^{(i+1)} > y_{v_i}^{(i)}$).
Dijkstra’s Algorithm: Efficiency

Theorem (Efficiency of Dijkstra’s Algorithm)

Dijkstra’s Algorithm terminates after \(m = |A| \) arc verification steps.

- Let’s try out Dijkstra’s Algorithm in practice; we expect that the running time essentially only depends, linearly, on the number of arcs.
- We try on examples with the same number of arcs, but different numbers of vertices.
- Result: There is a great dependence on the number of vertices, and we are not happy with the running time for large, sparse graphs (many vertices, few arcs)
- Where is the running time spent? Our coarse abstraction of running time (number of arc verification steps) does not give the answer.
- To find this out in the practical program, it is strongly recommended to find this out by measuring time, rather than thinking or guessing.
- Every modern, reasonable programming system has a facility for measuring how much running time is spent in parts of the program; this is called a (time) profiler.
- In the case of C, the GCC toolchain (compiler/linker option `-pg`) and the `gprof` tool provide a (sampling) time profiler.
To make refined mathematical statements about the running time of Dijkstra’s Algorithm, we analyze the algorithm on an abstraction of a computer, which we call the Random Access Machine (RAM).

Such a machine has a fixed (immutable) program, a central processing unit with finitely many registers, and direct (indexed by a constant) and indirect (indexed by the contents of a register) access to infinitely many memory locations.

Each of the registers and memory locations can store an integer of arbitrary size.

The running time of a program on the RAM is the number of elementary operations it executes.

- Reading a number from memory into a register
- Writing a number from a register to memory
- Elementary arithmetic operations (+, −, ×, division with remainder) on registers
- Comparing numbers (=, ≤, ≥) in registers
- Elementary control flow operations (branches)

In other words, by definition, each of the above elementary operations takes constant time (1 time unit). Note that this is a dramatic simplification of the running time of a program on a real computer.
We now turn to the refined analysis of Dijkstra’s Algorithm, based on a concrete implementation of the algorithm on a RAM:

- We need to clarify how the input data are presented
- We need to decide using which concrete data structures we store the data
- We need to clarify several steps of the algorithm

(The same is necessary if we want to create an implementation of the algorithm in a not-too-high-level programming language such as C.)

We will assume that the digraph \((V, A)\) is given in the form of an adjacency list, stored in arrays (i.e., using contiguous memory locations), which allows to

- obtain the number of vertices in constant time \(c_1\)
- given a vertex index \(v\), to determine the outdegree \(\delta^+(v)\) (the number of arcs leaving \(v\)) in constant time \(c_2\)
- given a vertex index \(v\) and an index \(i\), to determine the endpoint \(w\) of the \(i\)-th arc leaving \(v\), and the arc cost \(c_{v,w}\) in constant time \(c_3\)

We will store the potential vector \(y\) and the predecessor vector \(p\) as arrays. Accessing (reading or writing) an element \(y_v\) or \(p(v)\) of these vectors, given a vertex index \(v\), then takes a constant \(c_4\) many elementary operations.

We will store the set \(S\) as a singly-linked list; this allows to decide whether \(S = \emptyset\) in time \(c_5\), iterate through the elements in time \(c_6\) (per element), add an element at the front in constant time \(c_7\), and delete an element found by iterating in constant time \(c_8\).
Dijkstra’s Algorithm: Efficiency, IV

We now determine the precise number of elementary operations.

- We use the constants c_i associated with the data structures, which appeared to the previous slide.
- We use additional constants d_i to denote the number of elementary operations in other parts of the program.

Dijkstra’s Algorithm

Input: A digraph $G = (V, A)$ with nonnegative arc costs, starting node r

Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1. **Initialize y, p**

 $c_1 + d_1 + |V|(2c_4 + d_2)$ operations

2. **Set $S := V$.**

 $d_4 + |V|(c_7 + d_3)$ operations

3. **While $S \neq \emptyset$:**
 - $|V|$ iterations and $(c_5 + d_5)(|V| + 1)$ operations
 - $d_6 + |S|(c_4 + c_6 + d_7)$ operations
 - c_8 operations
 - $\delta^+(v)$ iterations, $c_2 + \delta^+(v)c_3$ operations
 - $2c_4 + d_8$ operations
 - c_4 operations
 - c_4 operations

 Choose $v \in S$ with y_v minimum.

 Set $S := S \setminus \{v\}$.

 For all arcs $(v, w) \in A$:
 - If $y_v + c(v, w) \leq y_w$:
 - $y_w := y_v + c(v, w)$
 - $p(w) := v$
Adding up everything:

- The minimum-finding operation takes \(d_6 + |S|(c_4 + c_6 + d_7) \) operations, where \(|S| \) starts with \(|V| \) and is decreased until it reaches 1. Thus its total time is:

\[
\sum_{s=1}^{|V|} (d_6 + |S|(c_4 + c_6 + d_7)) = |V|d_6 + \frac{|V|(|V|+1)}{2}(c_4 + c_6 + d_7)
\]

- All node-scanning operations (verifying all outgoing arcs) together take

\[
\sum_{v \in V} (c_2 + \delta^+(v)(c_3 + 4c_4 + d_8)) = |V|c_2 + |A|(c_3 + 4c_4 + d_8)
\]

- The remaining operations are easy to account for

Together we obtain

\[
e_1|V|^2 + e_2|V| + e_3|A| + e_4
\]

elementary operations, for some (complicated) constants \(e_i \).

For sparse graphs, where \(|A| \ll |V|^2 \), the term \(e_1|V|^2 \) is the largest summand. It comes from the minimum-finding operation!
Dijkstra’s Algorithm: Efficiency, VI

- We are not happy with the complicated analysis (counting of operations, lots of constants, . . .) we had to do to obtain this result.
- Moreover, the constants e_i we obtained still depend on the specific RAM we are using. For instance, on a version of a RAM with few registers, we might need more elementary operations to do the same thing.
- For these reasons, it is useful and convenient to ignore the specific constants and just ask how does the running time grow for large problems (i.e., asymptotically)
- We will use the Landau notation for asymptotic growth. Fix a function $g(n) \geq 0$.
 - A function $f(n) \geq 0$ is said to grow (asymptotically) at most with order $g(n)$ if
 \[\exists c > 0, n_0 \in \mathbb{N} : \forall n \geq n_0 : f(n) \leq cg(n). \]
 We use the notation $f(n) \in O(g(n))$, this is read as “big oh of $g(n)$”.
 - A function $f(n) \geq 0$ is said to grow (asymptotically) at least with order $g(n)$ if
 \[\exists c > 0, n_0 \in \mathbb{N} : \forall n \geq n_0 : f(n) \geq cg(n). \]
 We use the notation $f(n) \in \Omega(g(n))$, this is read as “big omega of $g(n)$”.
 - A function $f(n) \geq 0$ is said to grow (asymptotically) with order $g(n)$ if
 $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ (note: different constants are allowed); we write $f(n) \in \Theta(g(n))$ (read: “big theta of $g(n)$”)
 - Similarly, for functions of several arguments.
Using Big-Oh notation, we obtain that the running time of our RAM implementation of Dijkstra’s Algorithm is

$$\Theta(|V|^2).$$

In particular, the number of arcs (and thus sparsity) is no longer visible.

A Big-Oh calculus helps to simplify the expressions:

- For example, any polynomial function $p(n) = \sum_{i=0}^{d} p_i n^i$ (with $p_d \neq 0$) is in $\Theta(n^d)$.
- In particular, constants get consumed by higher-order terms
- $\max\{f_1(n), f_2(n)\} \in O(f_1(n) + f_2(n))$

By keeping in mind that we are only interested in this kind of asymptotic estimate, we can simplify our counting of elementary operations: We can be “sloppy”, in a controlled way.

- It suffice to determine that some operation is $O(1)$, or $\Theta(n)$; we don’t need to discuss the precise number of iterations.
We are **still not happy** with the performance of Dijkstra’s Algorithm for large, sparse graphs.

We have found the reason: Running time is (asymptotically) dominated by the minimum-finding operation.

A solution is to use **better concrete data structures**. Here it pays off to use a **binary heap** (an implementation of a **priority queue**) to implement the set \(S \) together with the potential vector \(y \).

A priority queue stores elements \(v \) together with a **priority** \(y_v \); it has **operations**:

- Empty?
- Insert and element \(v \) with priority \(y_v \)
- Find, remove, and return the element \(v \) of smallest priority \(y_v \)
- Find a given element \(v \), and change its priority to \(y'_v \).

The binary heap implementation of this abstract data structure on a RAM has running time of \(O(\log n) \) for all of these operations, where \(n \) is the number of elements stored.