Mathematics for Decision Making: An Introduction

Lecture 12

Matthias Köppe

UC Davis, Mathematics

February 12, 2009
We now determine the precise number of elementary operations.

- We use the constants c_i associated with the data structures, which appeared to the previous slide.
- We use additional constants d_i to denote the number of elementary operations in other parts of the program.

Dijkstra’s Algorithm

Input: A digraph $G = (V, A)$ with nonnegative arc costs, starting node r

Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1. **Initialize y, p**

 $c_1 + d_1 + |V|(2c_4 + d_2)$ operations

2. **Set $S := V$.**

 $d_4 + |V|(c_7 + d_3)$ operations

3. **While $S \neq \emptyset$:**

 $|V|$ iterations and $(c_5 + d_5)(|V| + 1)$ operations

 $d_6 + |S|(c_4 + c_6 + d_7)$ operations

 c_8 operations

 Choose $v \in S$ with y_v minimum.

 Set $S := S \setminus \{v\}$.

 For all arcs $(v, w) \in A$:

 If $y_v + c(v, w) \leq y_w$:

 - $y_w := y_v + c(v, w)$
 - $p(w) := v$

 $\delta^+(v)$ iterations, $c_2 + \delta^+(v)c_3$ operations

 $2c_4 + d_8$ operations

 c_4 operations

 c_4 operations
Adding up everything:

- The minimum-finding operation takes \(d_6 + |S|(c_4 + c_6 + d_7) \) operations, where \(|S|\) starts with \(|V|\) and is decreased until it reaches 1. Thus its total time is:

\[
\sum_{s=1}^{V} (d_6 + |S|(c_4 + c_6 + d_7)) = |V|d_6 + \frac{|V||V|+1}{2}(c_4 + c_6 + d_7)
\]

- All node-scanning operations (verifying all outgoing arcs) together take

\[
\sum_{v \in V} (c_2 + \delta^+(v)(c_3 + 4c_4 + d_8)) = |V|c_2 + |A|(c_3 + 4c_4 + d_8)
\]

- The remaining operations are easy to account for

- Together we obtain

\[
e_1|V|^2 + e_2|V| + e_3|A| + e_4
\]

elementary operations, for some (complicated) constants \(e_i\).

- For sparse graphs, where \(|A| \ll |V|^2\), the term \(e_1|V|^2\) is the largest summand. It comes from the minimum-finding operation!
We are not happy with the complicated analysis (counting of operations, lots of constants, . . .) we had to do to obtain this result.

Moreover, the constants \(e_i\) we obtained still depend on the specific RAM we are using. For instance, on a version of a RAM with few registers, we might need more elementary operations to do the same thing.

For these reasons, it is useful and convenient to ignore the specific constants and just ask how does the running time grow for large problems (i.e., asymptotically).

We will use the Landau notation for asymptotic growth. Fix a function \(g(n) \geq 0\).

- A function \(f(n) \geq 0\) is said to grow (asymptotically) at most with order \(g(n)\) if
 \[
 \exists c > 0, n_0 \in \mathbb{N} : \forall n \geq n_0 : f(n) \leq cg(n).
 \]
 We use the notation \(f(n) \in O(g(n))\), this is read as “big oh of \(g(n)\)”.

- A function \(f(n) \geq 0\) is said to grow (asymptotically) at least with order \(g(n)\) if
 \[
 \exists c > 0, n_0 \in \mathbb{N} : \forall n \geq n_0 : f(n) \geq cg(n).
 \]
 We use the notation \(f(n) \in \Omega(g(n))\), this is read as “big omega of \(g(n)\)”.

- A function \(f(n) \geq 0\) is said to grow (asymptotically) with order \(g(n)\) if
 \[f(n) \in O(g(n))\) and \(f(n) \in \Omega(g(n))\) (note: different constants are allowed); we write \(f(n) \in \Theta(g(n))\) (read: “big theta of \(g(n)\)”)

- Similarly, for functions of several arguments.
Using Big-Oh notation, we obtain that the running time of our RAM implementation of Dijkstra’s Algorithm is

$$\Theta(|V|^2).$$

In particular, the number of arcs (and thus sparsity) is no longer visible.

A Big-Oh calculus helps to simplify the expressions:

- For example, any polynomial function $p(n) = \sum_{i=0}^{d} p_i n^i$ (with $p_d \neq 0$) is in $\Theta(n^d)$.
- In particular, constants get consumed by higher-order terms
- $\max\{f_1(n), f_2(n)\} \in O(f_1(n) + f_2(n))$

By keeping in mind that we are only interested in this kind of asymptotic estimate, we can simplify our counting of elementary operations: We can be “sloppy”, in a controlled way.

- It suffice to determine that some operation is $O(1)$, or $\Theta(n)$; we don’t need to discuss the precise number of iterations.
Dijkstra’s Algorithm: Efficiency, VIIa

We now revisit the analysis of Dijkstra’s Algorithm, and use Big-Oh estimates for the number of elementary operations, rather than the precise numbers.

Dijkstra’s Algorithm

Input: A digraph \(G = (V, A) \) with nonnegative arc costs, starting node \(r \)

Output: A predecessor vector \(p \), encoding minimum-cost paths from \(r \) to all nodes.

1. Initialize \(y, p \)
 \(O(|V|) \) operations
2. Set \(S := V \).
 \(O(|V|) \) operations
3. While \(S \neq \emptyset \):
 \(O(|V|) \) iterations and \(O(|V|) \) operations
 - Choose \(v \in S \) with \(y_v \) minimum.
 - Set \(S := S \setminus \{v\} \).
 - For all arcs \((v, w) \in A \):
 \(O(\delta^+(v)) \) iterations, \(O(\delta^+(v)) \) operations
 - If \(y_v + c(v, w) \leq y_w \):
 \(y_w := y_v + c(v, w) \)
 \(p(w) := v \)

Now we immediately see that we have \(O(|V|^2 + |A|) = O(|V|^2) \) elementary operations in total.
We are still not happy with the performance of Dijkstra’s Algorithm for large, sparse graphs.

We have found the reason: Running time is (asymptotically) dominated by the minimum-finding operation.

A solution is to use better concrete data structures. Here it pays off to use a binary heap (an implementation of a priority queue) to implement the set S together with the potential vector y.

A priority queue stores elements v together with a priority y_v; it has operations:
- Empty?
- Insert and element v with priority y_v
- Find, remove, and return the element v of smallest priority y_v
- Find a given element v, and change its priority to y'_v.

The binary heap implementation of this abstract data structure on a RAM has running time of $O(\log n)$ for all of these operations, where n is the number of elements stored.
Dijkstra’s Algorithm with Binary Heaps: Efficiency

We now revisit the analysis of Dijkstra’s Algorithm, using binary heaps.

Dijkstra’s Algorithm

Input: A digraph \(G = (V, A) \) with nonnegative arc costs, starting node \(r \)

Output: A predecessor vector \(p \), encoding minimum-cost paths from \(r \) to all nodes.

1. Initialize \(y, p \) \(\quad \mathcal{O}(|V|) \) operations
2. Initialize a binary heap \(S := V \) with priorities \(y \). \(\quad \mathcal{O}(|V|) \) operations
3. While \(S \neq \emptyset \):
 - Choose \(v \in S \) with \(y_v \) minimum \(\quad \mathcal{O}(|V|) \) iterations and \(\mathcal{O}(|V|) \) operations
 - and \(S := S \setminus \{v\} \).
 - For all arcs \((v, w) \in A \):
 - If \(y_v + c(v, w) \leq y_w \):
 - \(y_w := y_v + c(v, w) \) \(\quad \mathcal{O}(\delta^+(v)) \) iterations, \(\mathcal{O}(\delta^+(v)) \) operations
 - and update the priority of \(w \) in \(S \)
 - \(p(w) := v \) \(\quad \mathcal{O}(1) \) operations

In total: \(\mathcal{O}(|V| \log |V| + |A| \log |V|) \) elementary operations.
In total: $O(|V| \log |V| + |A| \log |V|)$ elementary operations.
Under the natural assumption that $|A| \geq |V| = 1$ (no isolated vertices), we can write this as: $O(|A| \log |V|)$.

- For a very dense graph with $|A| \in \Theta(|V|^2)$, we would get a running time estimate of $O(|V|^2 \log |V|)$ – this is worse than the old implementation without binary heaps!
- However, already for slightly sparser graphs with $|A| \in O(|V|^2 / \log |V|)$, the running time estimate is $O(|V|^2)$, which is the same as the old implementation.
- The sparser the graph, the better! In particular, for very sparse graphs with $|A| \in O(|V|)$, the running time estimate is $O(|V| \log |V|)$, which is much better than the old implementation.

A straight-forward implementation of Dijkstra’s Algorithm with binary heaps easily solves problems examples such as with 70,000 vertices and 300,000 arcs in less than 10 seconds.