Mathematics for Decision Making: An Introduction

Lecture 17

Matthias Képpe
UC Davis, Mathematics

March 3, 2009

Minimum-cost flow problems

Minimum-cost r-s flow problem

Given a digraph (V,A), source r, sink s, arc capacities uy,, per-unit costs ¢, , and a
flow value ¢:
Find a feasible flow x of value (s) = ¢ that has minimum total flow costs Y. ¢y wXy.w-

We can generalize this to problems with several sources and sinks. (Note this is still
the case of one commodity —i.e., the same kinds of goods are produced in the
sources and consumed in the sinks, so it does not matter to which sink something is
sent.)

Minimum-cost flow problem

Given a digraph (V,A), arc capacities uy v, and flow excess values b, for all nodes,
find a feasible flow, i.e., a vector x of arc flows X, ,, with

0<xyw < Uyw

and
i&(v) = by,

that has minimum total flow costs) ¢, Xy w. 17-2

The primal criterion of optimality

@ By definition, a feasible flow x' for the minimum-cost flow problem has minimal
cost if and only if there exists no feasible flow x? of smaller cost.
@ So let’s consider a feasible flow x? as a candidate.

2

@ Call X = x2 —x' the difference of the two flows.

@ Since both x' and x? satisfy the equations f,(v) = b, for all v, we have
k(v)=0 forallv.
@ From 0 < x' +x < u, we also have the lower and upper bounds
—x'<x<u-—x'.
@ Finally, x° has smaller cost if and only if X has negative cost:

Y ek <0
(v.w)eA

@ These three conditions characterize “difference flows” X that can be added to the
feasible flow x', to obtain a new feasible flow (x) of smaller cost.

17-3

Using auxiliary networks

@ Components of X can be negative. To work around this, if xﬂ,’w > 0, we write

eV

Xvw = Zv.w — Zyy

with non-negative variables that respect the bounds
0<zyw<uyw— X\1/,w
1
0<2, <Xy
@ We can interpret this as a feasible flow z (without source or sink, i.e., a
circulation) in the auxiliary network G(x').
@ Note that the auxiliary graph does not have arcs corresponding to variables z,

and z,;"), that are fixed to zero by the above bounds.
@ (Note that the relation between X and z is one-to-many.)

A feasible flow x' has minimal cost if and only if there does not exist a feasible
circulation z in the auxiliary network (with the given capacities) with negative cost

c@):= Y (cvwzvw—CrwZiy)-
acA(x")

Using auxiliary networks

@ Now, from the Flow Decomposition Theorem, we know that every circulation can
be decomposed into flows along (simple) directed circuits:

K
z=) Az
=

(with A; > 0, and 2’ a unit flow along a simple directed circuit, and k < |A])

@ Since ¢(z) = Y%, Aic(z'), we know that if ¢(z) < 0, then at least one ¢(z) < 0,
so there exists a simple directed circuit of negative cost in G(x').

@ On the other hand, if 2 is a (unit) flow along a simple directed circuit in G(x') with
c(2') < 0, then x" is not minimal (because we can augment x' by sending some
Ai > 0 units of flow along the circuit, which will decrease the total cost).

A feasible flow x' has minimal cost if and only if there does not exist a simple directed
circuit of negative cost in the auxiliary network.

17-5

Augmenting Circuit Algorithm for Min Cost Flow

Augmenting Circuit Algorithm, Kantorovich [1942]

Input: Graph G = (V, A), capacities u, excess values b, costs ¢

Find a feasible flow x (max-flow, homework)

While there exists a negative-cost directed circuit in G(x), i.e., an augmenting
circuit for x in G:

Determine the capacity (bottleneck) of the augmenting circuit.

Augment x along C by this bottleneck.

Negative-cost directed circuits can be determined (in polynomial time) by running
the Bellman—Ford algorithm, or other shortest-path algorithms. (Key: cycles in the
predecessor vector.)

Again, as we see already on simple examples, this gives us (only) a
pseudo-polynomial algorithm for instances where it terminates.

Choosing “most negative” augmenting circuits does not work (neither effective nor
efficient)

Choosing minimum-mean-cost (i.e., most-negative-mean-cost) circuits produces a
polynomial-time algorithm, Goldberg—Tarjan [1989]

A strongly polynomial algorithm for min-cost flow was unknown until 1985!

