
Mathematics for Decision Making: An Introduction

Lecture 18

Matthias Köppe

UC Davis, Mathematics

March 5, 2009

18–1



Augmenting Circuit Algorithm for Min Cost Flow

Augmenting Circuit Algorithm, Kantoróvich [1942]
Input: Graph G = (V ,A), capacities u, excess values b, costs c

Find a feasible flow x (max-flow, homework)

While there exists a negative-cost directed circuit in G(x), i.e., an augmenting
circuit for x in G:

Determine the capacity (bottleneck) of the augmenting circuit.
Augment x along C by this bottleneck.

Negative-cost directed circuits can be determined (in polynomial time) by running
the Bellman–Ford algorithm, or other shortest-path algorithms. (Key: cycles in the
predecessor vector.)
Again, as we see already on simple examples, this gives us (only) a
pseudo-polynomial algorithm for instances where it terminates.
Choosing “most negative” augmenting circuits does not work (neither effective nor
efficient)
Choosing minimum-mean-cost (i.e., most-negative-mean-cost) circuits produces a
polynomial-time algorithm, Goldberg–Tarjan [1989]
A strongly polynomial algorithm for min-cost flow was unknown until 1985!

18–2



A dual criterion (certificate) of optimality

What we have found is a primal algorithm, together with a “primal” criterion of
optimality (non-existence of an augmenting circuit).
This is in some contrast to the earlier primal algorithms we discussed, where we
were aware of a “dual” criterion of optimality (existence of a certain certificate of
optimality).
For our search for more efficient algorithms, let’s try to find this missing duality
theory first.
Interpreting the non-existence of negative-cost directed circuits in terms of
shortest path theory yields:

Theorem (Optimality Certificate Theorem)

A feasible flow x1 has minimal cost if and only if there exists a potential vector
y = (yv )v∈V such that for all arcs (v ,w) ∈ A:

c̄v ,w < 0 implies xv ,w = uv ,w

c̄v ,w > 0 implies xv ,w = 0,

where the reduced costs c̄v ,w are defined as c̄v ,w = cv ,w + yv − yw .
18–3



A Dual Algorithm for Min-Cost Flow

Here’s a new idea:
In primal algorithms, we start with an initial feasible solution and improve it, step by
step, until the (dual) optimality criterion holds.
Let’s try instead a dual algorithm, where we start with a “solution” for which the
(dual) optimality criterion holds, but which is not feasible; and improve it, step by
step, until it becomes feasible.

Because the (dual) optimality criterion is about the existence of a certificate, we
also maintain this certificate during the course of the algorithm.
Concretely, for min-cost flow:

Keep a flow x = (xuv )(u,v)∈A that satisfies the bounds 0≤ x≤ u but is allowed to
violate the flow excess conditions;
keep a potential y = (yv )v∈V ;
. . . such that the conditions of the Optimality Certificate Theorem hold:

xv ,w = uv ,w for all arcs (v ,w) ∈ A with c̄v ,w < 0

xv ,w = 0 for all arcs (v ,w) ∈ A with c̄v ,w > 0

Very easy to construct an initial pair of solutions if all costs are non-negative:
Just use x = 0, y = 0.
We’ll discuss the general construction later.

18–4



The Primal-Dual Algorithm

Because both primal (flow) and dual (potential) information is maintained, we call
this the primal-dual algorithm.
The improvement steps of the algorithm need to push the flow towards feasibility;
i.e., we wish to correct the flow balance for all vertices where fx(v) 6= bv .

We call v ∈ V an x-source if fx(v) > bv .
We call v ∈ V an x-sink if fx(v) < bv .

We will correct the flow balance by sending flow from an x-source to an x-sink.
Again, we will be using an x-augmenting path (corresponding to a directed path
in the auxiliary network).
But we need to be careful to keep the optimality conditions satisfied!

Primal-Dual Algorithm
Input: Graph G = (V ,A), capacities u, excess values b, costs c

Construct a pair of initia solutions x, y.

While x is not feasible:
If there exists an x-augmenting path P of equality arcs:

Augment the flow x along P
Otherwise:

Find a vertex set R blocking all such paths, and change y at R. 18–5


