
Mathematics for Decision Making: An Introduction

Lecture 2

Matthias Köppe

UC Davis, Mathematics

January 8, 2009

1

Let’s revisit the example from last time

The Notip Table Company sells two models of its patented five-leg tables. The basic
version uses a wood top, requires 0.6 hours to assemble, and sells for a profit of $200.
The deluxe model takes 1.5 hours to assemble (because of its glass top), and sells for
a profit of $350. Over the next week the company has 300 legs, 50 wood tops, 35 glass
tops, and 63 hours of assembly available. Notip wishes to determine a maximum profit
production plan assuming that everything produced can be sold.

We found a mathematical model for this problem. We are using two variables to
represent the decision on the production quantities:

x1 – number of basic tables, x2 – number of deluxe tables

max 200x1 +350x2 (Total profit)

s.t. x1 ≤ 50 (Wood tops available)

x2 ≤ 35 (Glass tops available)

5x1 +5x2 ≤ 300 (Legs available)

0.6x1 +1.5x2 ≤ 63 (Hours of assembly time available)

x1,x2 ≥ 0 (Non-negative quantities to be produced)

x1,x2 ∈ Z (Integer quantities to be produced) 2

How to solve this problem, I: Brute Force

Important observation
The feasible set F is finite.

Because of boundedness (0≤ x1 ≤ 50 and 0≤ x2 ≤ 35) and integrality (x1,x2 ∈ Z), we
have only a finite number (at most 51×36 = 1836) feasible solutions.
On a computer, it is easy and super-fast to enumerate all these solutions. We compute
the objective function for all these solutions, and pick the best solution!

Theorem (“Bounded Integer Optimization is ‘Trivial’ ”)
Given integer optimization problems of the form

max f (x)

s.t. gi(x)≤ 0 for i = 1, . . . ,m
x = (x1, . . . ,xn) ∈ X = Zn

and finite lower and upper bounds for all variables, valid on the feasible region.
Then there exists an algorithm that always computes an optimal solution x∗.

Without given bounds, no such general algorithm can exist! (Hilbert’s 10th)
3

The problem with Brute Force

To solve a problem in practice on a computer, it is not enough to know that there exists
an algorithm, i.e., a finite procedure.

It easily happens that the brute force method is not useful at all because for most
interesting problems it takes too long, even on very fast computers.

Large bounds
If we have three integer variables
x1,x2,x3 with bounds
1≤ xi ≤ 1000000, we would have to
check 1018 solutions!
If a computer with 8 processor cores
running at 2.5GHz could check one
solution in one cycle, it would still take
1018/(8 ·2.5 ·109) = 50 ·106 seconds
(more than 1.5 years). This may be too
long!

High dimension
More impressive examples appear
when we have many variables, even if
they have low bounds. In a
combinatorial problem with 100 binary
variables (xi = 0 or xi = 1), we would
have to check 2100 solutions. A current
supercomputer, IBM’s Blue Gene/P,
has 884,736 processors running at
850 MHz. It would take 1.6 ·1015 years.
The age of the universe is only
(13.7±0.1) ·109 years (Wikipedia).

4

How to solve this problem, II: Graphing

An important observation is that we can gain insight by graphing the example problem
– because it only has 2 variables.

5

How to solve this problem, III: Using optimization software

We will be using three pieces of software in this lecture. (All of them are free at least for
noncommercial and academic use. ZIMPL is free (open source) software.)

SCIP – “Solving Constraint and Integer Programs”
SCIP is a very good solver for Mixed Integer Linear Optimization Problems, i.e.,

max f (x)

s.t. gi(x)≤ 0 for i = 1, . . . ,m
x = (x1, . . . ,xn) ∈ X

where f and gi are linear functions, and X = Rn, or X = Zn, or X = Rn1 ×Zn2 .

SoPLEX – a solver for linear
optimization problems
A super-fast solver for linear
optimization problems (X = Rn) is the
basic building block of optimization and
operations research technology.

ZIMPL – an algebraic modeling
language for optimization
ZIMPL provides a convenient way to
write down optimization problems in
the computer.

SCIP uses both SoPLEX and ZIMPL internally.
6

Our example problem in ZIMPL

ZIMPL input files are plain text files; use a text editor (such as Emacs or gedit) to create
them, not a word processor. This is file notip-1.zpl:

var basic_tables integer;
var deluxe_tables integer;

maximize profit:
200 * basic_tables + 350 * deluxe_tables;

subto legs_constraint:
5 * (basic_tables + deluxe_tables) <= 300;

subto wood_tops_constraint:
basic_tables <= 50;

subto glass_tops_constraint:
deluxe_tables <= 35;

subto assembly_hours_constraint:
0.6 * basic_tables + 1.5 * deluxe_tables <= 63; 7

notip-1.zpl

The ZIMPL language: Variable definitions

A complete description is found in section 4.4 in ZIMPL User Guide.

Variable type:
var NAME integer; Defines an integer variable
var NAME binary; Defines a binary (0/1) variable
var NAME real; Defines a real variable
var NAME; Also defines a real variable

All variables (except binary) have a lower bound of 0 and no upper bound. If different
upper bounds are needed, change the variable definition:

var NAME integer >= -5 <= 5 Defines an integer vari-
able that can take values
from -5 to 5

var NAME real >= -infinity <= infinity Defines a free variable
that can take arbitrary real
values

8

The ZIMPL language: Objective and constraints

The objective function is written as:

maximize NAME: TERM;
minimize NAME: TERM;

where TERM is an arbitrary (linear) expression.

Each of the constraints is written as:

subto NAME: TERM SENSE TERM

Here SENSE is one of <=, >=, ==.

(The ZIMPL language has a much greater power than this; we’ll dive into its complexity
gradually.)

9

Homework

For Thursday Jan 15:

By rolling dice, decide randomly for one of the exercises 2-2, 2-3, 2-4, and 2-5
from the handout.
Then do this exercise, and prepare a 5-minute presentation of the problem and its
solution.

10

