The Primal-Dual Algorithm (reminder)

Primal-Dual Algorithm

Input: Graph $G = (V, A)$, capacities u, excess values b, costs c

- Construct a pair of initial solutions x, y.
- While x is not feasible:
 - If there exists an x-augmenting path P of equality arcs:
 - Determine the width of the path
 - Augment the flow x along P
 - Otherwise:
 - Find a vertex set R blocking all such paths, and change y_v for all $v \in V \setminus R$
 (as described on page 18–12)

We were not happy with this algorithm because it seems we may need quite a number of dual steps (change of potentials) until we can make the next primal step (sending flow from an x-source to an x-sink)
To be more precise: Because each dual step increases the size of the blocking set R by at least one vertex, at most $n - 1$ dual steps are necessary.

For integer-valued data, it is clear that each primal step (augmenting flow) decreases the imbalance by at least 1; so the number of augmentations is bounded by the initial imbalance

$$B_{x^0} := \sum_v \max\{0, b_v - f_{x^0}(v)\},$$

where x^0 is the initial feasible solution.

For non-negative costs, we could start with the zero flow $x^0 = 0$, so we have at most

$$B_0 = \sum_v \max\{0, b_v\}$$

augmentations.

So again, we will get a **pseudo-polynomial algorithm** of running time $O(S(n, m) \cdot n \cdot B_{x^0})$, where $S(n, m)$ is the running time of a shortest-path computation.

(Knowing this more precisely does not make us happier, though.)
This observation suggests a new algorithm, due to Busacker–Gowen [1961]

Primal-Dual Algorithm with Least-Cost Augmenting Paths

Input: Graph $G = (V, A)$, capacities u, excess values b, costs c

- **Construct a pair of initial solutions x, y.**
- **While x is not feasible:**
 - Find a least-cost (with respect to reduced costs \tilde{c}) x-incrementing path P_v from an x-source to v, for each $v \in V$ (**one nonnegative-cost shortest-path-tree calculation** in a graph with an artificial source); denote by σ_v the costs of the paths.
 - Choose an x-sink s such that σ_s is minimum
 - Update the potentials $y_v := y_v + \min\{\sigma_v, \sigma_s\}$ for $v \in V$.
 - Augment x on P_s.

Lemma

This algorithm maintains the optimality conditions on x and y in each step.
Efficiency of the Algorithm, Initial Feasible Solution

- Because the dual update can be done in one step, using a single shortest-path-tree computation, this is quite a bit faster. The running time reduces to $O(S(n, m) \cdot n \cdot B_{x^0})$.

How do we construct a pair of initial solutions, by the way?

- If all costs are non-negative, can use $x = 0$, $y = 0$.
- We could try to set $y = 0$ (or arbitrary), and set $x_{v,w} = u_{v,w}$ if $\bar{c}_{v,w} < 0$ and $x_{v,w} = 0$ to satisfy the optimality conditions. However, this fails if some $u_{v,w} = \infty$.

General solution: (updated)

- Solve a maximum-flow problem to find out whether there is a feasible flow; discard the solution.
- Solve a shortest path problem (in a directed graph G^∞ that only has the arcs with infinite capacities, using the original costs c).
- If there is no feasible shortest-path potential, there exists a negative-cost directed cycle of infinite capacity; so the problem is unbounded (no optimal solution).
- Otherwise, we obtain a feasible shortest-paths potential y on G^∞; so we have $y_w \leq y_v + c_{v,w}$ for all (v, w) with $u_{v,w} = \infty$.
- We use this y as the initial potential. From the above inequality we have $\bar{c}_{v,w} \geq 0$ for all arcs (v, w) with $u_{v,w} = \infty$.
- Now set $x_{v,w} = u_{v,w}$ if $\bar{c}_{v,w} < 0$ and $x_{v,w} = 0$. (Note that no $x_{v,w}$ will be infinite.)
By a **scaling technique** (where demands b_v are replaced by $\lfloor b_v/2^k \rfloor$), Edmonds–Karp [1972] obtained a **polynomial-time variant**. The running time is $O(n \cdot S(n, m) \cdot (1 + \log \max\{B_0, U\}))$, where U is the largest finite arc capacity.

The **scale-and-shrink algorithm** (following from work by Tardos [1985], Orlin [1985], Fujishige [1986]) is a **strongly polynomial-time** variant, with a running time of $O((m_0 + n)n \log n \cdot S(n, m))$.
There’s much more of optimization to learn!

We have only scratched the surface…

- MAT-168 (Spring 2009) – Linear Programming
- 2009/2010: Year-long program (VIGRE RFG) on optimization:
 - Optimization seminar
 - Reading courses
 - 258A (Fall 2009) – Numerical Optimization
 - 258B (Winter 2010) – Variational Analysis and Mixed-Integer Nonlinear Programming
 - 280 (Spring 2010) – Integer Programming