Mathematics for Decision Making: An Introduction

Lecture 4

Matthias Képpe
UC Davis, Mathematics

January 15, 2009

Modeling the TSP as a standard optimization problem, |

@ A key observation is that every tour of the TSP on n cities can be viewed as a
subgraph (V, E’) of the complete graph K, = (V, E) on n nodes.
(We disregard orientation and starting point of the tour by doing so.)

@ Remember that the edges of the complete graph are the 2-element subsets of n:

E={{ij}:ij=1,....n}
Note that the order of j and j does not play any role:
{0} = {01}
@ We can “encode” any subgraph (V, E’) with a “set” of 0/1 variables, one for each
edge of the complete graph:

I 1 if edge {i,j} is present, i.e., {i,j} € E’
Ui} 0 if edge {/,j} is not present

@ Thus, each vector (xg; ;)i 1ce € {0,1}F “encodes” a subgraph (V,E’). One way
of writing this vector is as the upper triangle of a square n x n matrix — but how we
write it, is not essential.

@ Important is that this is a one-to-one correspondence between the combinatorial
objects (“subgraphs”) and 0-1-vectors.

42

Modeling the TSP as a standard optimization problem, I

Next we wish to express the objective function.
@ We wish to minimize the total length of the tour T, which we view as the edge set
of a subgraph (V, T) of the complete graph K, = (V, E).
@ Using the notation d(/,j) for the length of way from city i to j (or reversely —
remember we deal with the symmetric case!), the total length is:

length(T) =Y d(i.j)
{ij}eT
This summation is not “nice” — its domain of summation depends on the
solution T. We prefer to sum over fixed domains of summation!
@ Now we remember that we have 0/1 variables xy; , that are 1if {i,j} € T, and 0
otherwise. So it does not change anything if we multiply d(i,/) by x;

length(T) =Y xqpd(i)= Y. xpupd(i))
{ij}eT {ij}€eE
In the last step, we extended the domain of summation to all edges in E — again,
nothing happens, since all the added summands are 0.
@ So now we have expressed the length of a tour as a linear function in our X{ij}
variables; note the domain of summation is independent of the tour!

43

Modeling the TSP as a standard optimization problem, Il

@ Since all tours are subgraphs, but not all subgraphs are tours, we need to
add constraints on our variables, to make sure that only tours are feasible
solutions.

@ Remember that we call a vertex v and an edge e incident if v € e, i.e., v is one of
the endpoints of the edge e.

@ The degree of a vertex v is the number of edges incident with it.

@ A key observation is that in a tour, viewed as a subgraph of Kj,, every vertex has
degree 2 (if we oriented the tour, one edge would go in, one edge would go out).

@ So let’s write down this insight as a constraint, for every vertex i:
Y Xip =2
ji{ijYeE

Again, the domain of summation is independent of the tour, so this equation is a
linear constraint in our variables xy; .

Putting the TSP model in the computer

@ In the computer, it is convenient to represent edges (2-element sets) {/,j} as
(ordered) pairs (/,j) with i < j.

@ Thus, for a 6-city TSP, we would be using variables named x12, x13, x14, x15,
x16, x23, x24, x25, x26, x34, x35, x36, x45, x46, x56

@ When we write down the constraint

Y X =2

j{ijreE

by using the ordered-pair representation, we actually write

Y Xy + XX = 2

j<i j>i

@ The resulting optimization model in ZIMPL is found in the file tsp6-1.zpl

45

Using parameters in ZIMPL

@ In the example, | have used certain (made-up) distances d(/,).

@ Often we are interested in running the same optimization problem for different
“data” — in our case with a different set of distances.

@ For this purpose, it is useful to use parameters (named constants) in ZIMPL.

This allows to decouple specific data of a problem instance from the modeling that
is valid for a whole class of problems.
Syntax:

param NAME := VALUE;

@ See tsp6-2.zpl

46

TSP Formulation — What are we missing?

@ Using SCIP on tsp6-1.zpl or tsp6-2.zpl, we obtain an optimal solution of
X2 = Xo3 = X13 = X45 = X46 = Xs56 = 1, all Othel’XijZO

This does not look like a tour! What are we missing?

@ We are not missing anything; to the contrary, we have too much!
Our integer program has many feasible solutions that do not correspond to tours.
(The corresponding subgraphs do satisfy the degree-2 conditions.)
In the example, we obtained a feasible solution that corresponds to 2 cycles of
length 3.

@ Dually speaking, we are missing something: We need to add more inequalities
that “forbid” short cycles.

Let T C E be any TSP tour on Kj,.
Let S C V be a vertex subset of size 3 < |S| < n—3. Then

{{ij}eT:ijeS} <|s|-1.

Complete TSP Formulation

Theorem (Complete TSP Formulation)
The 0/1 solutions of the system

Z X(ip =2 for all vertices i =1,...,n
j{ijteE

Y xuy <I8|-1 forall S in K, with3 < |S| < n—3
{ij}eE:

ijes

are in one-to-one-correspondence with the TSP tours on K.

@ How many short-cycle inequalities?

n n n
2"—2 -2 -2
0 1 2
For n = 15: about 32000.

@ Shall we continue with this formulation?
Yes, but (at least) we don’t want to write the constraints down manually.

More ZIMPL Power: Indexed variables and parameters

@ So far, we have used “made-up” variable names like x23.
It is more useful to use indexed variables (and parameters).

@ The ZIMPL syntax is VARIABLE [INDEX], but we first have to declare the indexed
variables.

@ We first need an index set. Sets are defined like this in ZIMPL (section 4.2 in the

manual):

set A := {1, 2, 3};
In the TSP model, we will certainly need the set V of vertices:

param n := 6;

set V:={1..n };
Additionally, we need the set E of edges, which we represent by (ordered) pairs
(1,§) with i < j. Pairs or, more generally, vectors are called tuples in ZIMPL and
have the notation (i, j) (angle brackets).

@ Using these index sets, we can declare indexed variables and parameters.
var x[E] binary;
There is a special syntax for defining parameters, entry by entry.

@ See tsp6-3.zpl

49

More ZIMPL Power: Summation and lteration

@ The summation operator, to be used in objective functions or the left-hand or
right-hand side of constraints.
The general syntax is:
sum TUPLE-TEMPLATE in SET : EXPRESSION
This makes it possible to write down the expression for the objective function in a
compact way:
minimize tour_length:
sum (i,j) in E : d[i,3j] * x[i,31;
(Operator precedence: sum binds stronger than +, but weaker than *.)
@ The iteration statement, to be used in constraints:
The general syntax is:
forall TUPLE-TEMPLATE in SET do
This allows to generate multiple constraints at once:

subto degree:
forall <v> in V do
sum <v,j> in E : x[v,j] + sum <i,v> in E : x[i,v] == 2;

4-10

More ZIMPL Power

@ We next construct the set E within ZIMPL using the with operator (section 4.2).
General syntax:

set NAME := { TUPLE-TEMPLATE in SET with CONDITION }
For the set E:

set E := { <i,j> in (V cross V) with i < j };
@ Finally, we can define indexed sets (section 4.2):

set S[] := powerset(V);

This defines sets S[11, ..., S[2!V/] as all the subsets of V.
An easy way to get the index set 1,...,2IVI that allows to access these sets is by
using the indexset operator:

set S_Indices := indexset(S);

@ Now we can express the complete TSP formulation (tsp6-5.zpl)

Case Study: Line Drawings on Pen Plotters

Optimizing the operation of a pen plotter

Pen plotters are used instead of printers for very large-scale line drawings, such as for
drawings in architecture, or charts of logic circuits in electronics. (Nowadays pen
plotters are gradually being replaced by large-format inkjet printers.)

@ The plotter can move a pen horizontally

@ At the same time it can roll the paper (either a large sheet or paper from a roll) up
and down

@ These movements can be done in pen-up (not drawing) or pen-down (drawing)
mode

Problem: Given a drawing to be produced, minimize the total drawing time.

Key questions:
@ How is the drawing time determined?
@ There are two parts of the total drawing time — one part is independent of our
decisions, one does depend on our decisions.
@ Can we draw every drawing in pen-down mode only?
@ What are useful variables for modeling?
@ What constraints do we need? e

Case Study: The Shortest Path Problem in GPS Navigation

Systems

The fundamental problem to be solved is to find the “shortest” path from A to B through
the network of streets and roads.
Questions:

@ How are distances defined?

@ Mathematical abstraction of the network?

@ Integer linear optimization model?

4-13

