
Mathematics for Decision Making: An Introduction

Lecture 8

Matthias Köppe

UC Davis, Mathematics

January 29, 2009

8–1

Shortest Paths and Feasible Potentials

Feasible Potentials
Suppose for all v ∈ V , there exists some (directed) path Pv from r to v of cost yv .
Suppose there is one arc (v ,w) ∈ A with yv + cv ,w < yw . Then we know that there is a
path P ′w =

(
Pv ,(v ,w)

)
that is cheaper than Pw (descent step).

In particular: If for all v ∈ V , we have that yv is the cost of a minimum-cost path P∗v
from r to v , then

yv + cv ,w ≥ yw for all (v ,w) ∈ A. (1)

We call any vector y = (yv)v∈V ∈ (R∪{+∞})V a potential; we call it a feasible
potential if yr = 0 and (1) holds.

Lemma (Feasible potentials provide lower bounds)
Let y be a feasible potential and Pv be a path from r to v. Then c(Pv)≥ yv .

In particular, if c(Pv) = yv , then Pv is a minimum cost path (optimality criterion).

8–2

The Algorithm of Ford [1956]

We have discovered two ingredients of a descent algorithm:
1 A descent step that moves from one solution to a better solution.
2 An optimality criterion that tells us when to stop.

We need one more thing:
3 An initial solution: We can start from a y with yr = 0 and yv = +∞ for all v 6= r

(note this is not a feasible potential). We start with a predecessor vector p with
p(r) = 0 and p(v) =−1 (to indicate we don’t know any path yet)

Ford’s Algorithm
Input: A digraph with arc costs, starting node r
Output: Shortest paths from r to all other nodes
Initialize y and p;
While y is not a feasible potential:

Find an incorrect arc (v ,w) and correct it, updating predecessor information
Reconstruct shortest paths from p.

Ford’s Algorithm is a prototype of a label-correcting algorithm.
Note that, as is, it is underspecified (not strictly an algorithm) because we do not say
which incorrect arc should be taken.

8–3

Ford’s Algorithm and Negative-Cost Directed Circuits

On the second example of the homework, we noticed:

Sometimes, Ford’s Algorithm does not terminate!
Strictly speaking, because of this, it is not an algorithm, i.e., a finite procedure!

This is caused by a negative-cost directed circuit in the problem.
Along such a circuit, the algorithm will update the potentials yv , so they become
smaller and smaller, without bounds.
We remark that in this example, for all nodes v on the directed cycle, there does
not exist a least-cost directed path from r to v ! We can go through the directed
cycle an arbitrary number of times, to get directed paths that have arbitrarily low
(negative) cost.

By changing the input specification and just excluding the case of negative-cost
directed circuit, we can make Ford’s method always finite, i.e., turn it into an algorithm.
We emphasize that this needs to be proved, which we do next.
We also prove that it is correct, i.e., when it finishes, it has computed the desired result.

8–4

Finiteness and Correctness of Ford’s Method, I

We need to prove theorems that establishes properties of the contents of our data
structures (here: y and p) during the execution of the algorithm.

Proof technique
Most algorithms have loops (here: a while loop). Then proofs of the theorems will be
inductive proofs, where we show that

a certain property holds before we enter the loop,

if the property holds at the beginning of one loop iteration, it also holds at the end
of this loop iteration.

This implies that the property also holds when the loop is left.

Lemma (Loop invariants in Ford’s Algorithm)

If
(
G = (V ,A),c

)
has no negative-cost directed circuit, then, at the beginning and

end of any iteration of the while loop in Ford’s Algorithm, we have for each v ∈ V:
1 If yv <∞, then it is the cost of a simple directed path (i.e., a directed path where

no vertex is visited twice) from r to v.
2 If p(v) 6=−1, then the predecessor vector p recursively defines a simple directed

path from r to v of cost at most yv . 8–5

Finiteness and Correctness of Ford’s Method, II

Theorem (Finiteness and Correctness)

If
(
G = (V ,A),c

)
has no negative-cost directed circuit, then Ford’s Algorithm

terminates after a finite number of iterations. At termination, p defines a least-cost
directed path from r to v of cost yv .

Proof.
Finiteness:

By the Loop Invariants Lemma, every yv is the cost of a simple directed path.

There are only finitely many simple directed paths, thus only finitely many possible
values for each yv .

In each correction step, one yv is lowered. Thus only finitely many steps.

Correctness:

By the Loop Invariants Lemma, for each v ∈ V , the predecessor vector p defines
a simple directed path Pv from r to v of cost at most yv .

But the loop has finished, so y is a feasible potential, so by the Lower Bound
Lemma, any path from r to v has cost at least yv .

So Pv is optimal. 8–6

More About Feasible Potentials

Theorem (Characterization of networks with feasible potentials)
(G,c) has a feasible potential if and only if it has no negative-cost directed circuit.
(This holds without assuming there always exists a directed path from a source!)

Proof.
If G has a feasible potential y, then it does not have a negative-cost directed circuit:

Let v0,v1, . . . ,vk−1,vk = v0 be a directed circuit. As in the proof of the Loop
Invariants Lemma, adding up cw ≥ yi − yi−1 along the circuit yields c(P)≥ 0.

Now suppose that G does not have a negative-cost directed circuit:

Add an artificial source vertex r and zero-cost arcs (r ,v), making a new graph G′.

This graph G′ satisfies our assumption that there always exists a directed path
from the source r to any vertex.

G′ also does not have a negative-cost directed circuit.

Apply Ford’s Algorithm.

By the Finiteness and Correctness Theorem, G′ has a feasible potential y′.

This gives a feasible potential y for G.
8–7

Efficiency of Algorithms

Now that we know that it terminates (in the case of no negative-cost directed cycles),
we can ask how fast (efficient) it is!

We could implement it on a computer, and systematically test how long it takes for
graphs of various sizes, and, for a given size, how the running time depends on
the actual data.

(You did this test with a TSP formulation and SCIP as a black box.)

However, in the case of shortest paths and Ford’s Algorithm, we know the
algorithm precisely (it’s a transparent box), so we can do better

We will make mathematical statements about the running time, and prove them.

Because different computers have different speeds, we need a mathematical
abstraction of running time or even a mathematical abstraction of a machine.

Theoretical Computer Science has a wealth of such abstractions.

We start with a very coarse abstraction that is sufficient for analyzing Ford’s
Algorithm: We just count the iterations of our while loop.

8–8

Theorem (Efficiency of Ford’s Algorithm)
If c is integer-valued and G = (V ,A) has no negative-cost directed circuit, then Ford’s
Algorithm terminates after at most Cn2 steps, where n = |V | and

C = m(c) = 1+2||c||∞ with ||c||∞ = max{|c(a,b)| : (a,b) ∈ A}.

This is a typical statement of an efficiency result: We establish an upper bound
for (some abstraction of) the running time, with a simple formula. Note we do
not predict the precise running time; the algorithm could be much faster than that.

Proof.
The first correction step, leading to a finite potential value yv of a vertex, gives yv

that is at most ||c||∞(n−1), because it is the cost of a simple directed path (with
at most n−1 arcs!) from the root.

In every later correction step, yv gets reduced by at least 1, because c is integral

In the end, the potential value yv is the cost of a least-cost path; this may be
negative, but we certainly have yv ≥−||c||∞(n−1).

Thus at most 1+2 · ||c||∞(n−1)≤ Cn steps per vertex

Hence, at most Cn2 correction steps in total.

8–9

Efficiency of Ford’s Algorithm, II

The theorem establishes that Ford’s Algorithm is a pseudo-polynomial
algorithm, i.e., its running time is bounded above by a polynomial expression in
the “dimensions” (such as nk) and the absolute values of its input data.
Because the bound is monotonous in C and n, it is convenient to interpret this
bound as an upper bound on the running time of the worst case that can happen
among all problems (G,c) with |V | ≤ n and and m(c)≤ C.
In a homework exercise, you show that there is a one-parameter family
{(Gk = (Vk ,Ak),ck) : k ∈ N} of networks with nk = |Vk |= 2k +4 vertices and
Ck = 2k , such that Ford’s Algorithm (with a specific, clever, evil way of choosing
which incorrect arc should be corrected) takes more than 2k steps.
This shows that the upper bound is “not too far off” from the worst case

Better efficiency classes:
We are not happy with pseudo-polynomial algorithms, because for the same
graph G, the running time might grow quickly if we just use “large numbers”
Better are polynomial algorithms, where the running time is allowed to grow
polynomially in the “dimensions” (such as n), but only polynomially in the number
of digits needed to write down the data (such as ca,b)
Even better are strongly polynomial algorithms, where the worst-case running
time (#steps) is allowed to depend only on the dimensions, not on the data

8–10

Homework 1

1 Currency arbitrages

1 Use Internet resources to learn about the notion of currency arbitrage.
2 In a nutshell, given is a matrix R of currency exchange rates, i.e., for each pair (v ,w)

of currencies, an exchange rate rv ,w is given, i.e., the number of units of currency w
that can be paid for with one unit of currency v . Further given is a currency unit a (for
instance, USD); we start with 1,000 of the currency unit a and buy and sell currencies
using the given exchange rates, until we get currency unit a back. If we make a profit,
this is called an arbitrage opportunity.

3 Find a mathematical formulation for the problem of determining whether there exists a
currency arbitrage, and finding the maximum possible arbitrage. If your formulation is
nonlinear, find a way to make it linear by a change of variable. Create a ZIMPL model;
the exchange rate data should be read from a separate data file.

4 From Internet resources or the Wall Street Journal, obtain current exchange rates
between USD, EUR, GBP, JPY, and CHF (at your choice, additional currencies). By
solving your ZIMPL model with SCIP, determine whether there exists an arbitrage
opportunity starting from your 1,000 US dollars, and, if so, determine the maximum
possible arbitrage.

5 If you discovered an arbitrage opportunity with these data, explain whether you would
be able to make real profit from it.

8–11

Homework 2, 3

2 Modeling with graphs.
Back in the GPS Navigation System problem, show how to model complicated
street intersections, such as a standard north/south–east/west intersection where
left turns are not allowed for cars coming from north or south.

3 A problem reduction.
Packaged as a black box, you receive from me an algorithm that solves the
following problem:

Least-cost simple directed path problem
Given a directed graph G = (V ,A), arc costs cv ,w ∈ R, which are allowed to be
negative, and two vertices r ,s ∈ V , find a least-cost simple directed path from r to s
in G.

Show that you can solve an arbitrary symmetric traveling salesman problem by
making use of this algorithm.

8–12

