1. Prove that
 \[\lim_{x \to \infty} \frac{1}{x} \cos x = 0 \]

2. Compute limits.

 b) \[\lim_{x \to 2} 7x + 3 = 17 \]

 a) \[\lim_{x \to \infty} \frac{2x^2 + 5}{7x^2 + 4x + 3} \]

 b) \[\lim_{x \to \infty} \frac{\sqrt{2x^3 + 4}}{x^2 + x + 1} \]

 c) \[\lim_{x \to 1} \frac{x^3 - 1}{x - 1} \]

 d) \[\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x} - x}{x + 1} \]

 c) \[\lim_{x \to 0} \frac{\sin(-x)}{\sin(5x)} \]
3) Prove that equation
\[x^6 - 2x - 1 = 0 \] has at least one real root.

4) Determine at what points \(m = a, b, c, d \)

\(f(x) \)

I) There is a limit
\[\lim_{x \to m} f(x) \]

II) \[\lim_{x \to m^+} f(x) \]

III) \[\lim_{x \to m^-} f(x) \]

5) Compute derivatives of
a) \[\frac{\sin x + 1}{\cos x + 1} \]
b) \[\frac{(\ln x)^3}{1 + x^2} \]
6) \(y(x) \) is a solution of
\[\sin x \sin y + xy = \ln x \]
Find \(y' \) as a function of \(x \) and \(y \).

7) Find characteristic points
of function \(f(x) = \frac{\sqrt{x^2 - 1}}{x} \)
and plot the graph.

8) Using Newton method find
an first approximation to
the root of \(x^5 + x + 1 = 0 \).
Use \(x_0 = \frac{1}{2} \) as initial approximation.

9) The lengths of the two legs of a
right triangle depend on time. One leg,
whose length is \(x \), increases at a rate of \(5 \)
feet per second, while the other of length \(y \), decreases at the rate of 10 feet per second. At what rate is the hypotenuse changing when \(x = 3 \) feet and \(y = 4 \) feet?

Is the hypotenuse increasing or decreasing then? Compute a rate of change of the area.

\(f(x) = x^2 e^{-x} \)

Find a) intercepts, b) critical points, c) local maxima minima d) inflection points, e) asymptotes. f) Graph the function.