Instructions: This is a list of exam problems from previous years. WARNING: I make no promise that this year's questions will resemble these in any way. The following formulas will be given to you on the exams:

$$
\begin{aligned}
& \sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
& \sin A \cos B=\frac{1}{2}(\sin (A-B)+\sin (A+B)) \\
& \cos A \cos B=\frac{1}{2}(\cos (A-B)+\cos (A+B)) \\
& \sin ^{2} A=\frac{1}{2}(1-\cos (2 A)), \quad \cos ^{2} A=\frac{1}{2}(1+\cos (2 A))
\end{aligned}
$$

1. Solve the following equations for x.
(a) $e^{-3 x}=e$
(b) $\frac{x^{2}}{2}=e^{2}$
(c) $\frac{2}{2+10 e^{0.1 x}}=5$
2. You have 10 pounds of a radioactive element whose half life is 60 months. How much time must elapse until only 1 pound remains? Give the final answer as a decimal using the approximation $\frac{\ln 5}{\ln 2} \approx 2.3$.
3. Evalulate the following integrals.
(a) $\int \frac{x}{\sqrt{1+2 x^{2}}} d x$
(b) $\int \frac{e^{x}}{2} d x$
(c) $\int \frac{1}{x(\ln x)^{3}} d x$
4. Find the derivatives of the following functions.
(a) $f(x)=(\cos x)^{\ln (x)}$
(b) $f(x)=\ln (x \ln x)$
5. Find the function f that satisfies $f^{\prime \prime}(x)=2, f^{\prime}(2)=5$ and $f(2)=10$.
6. Solve the following equations for x.
(a) $e^{x}=1$
(b) $x^{-2}=\frac{2}{e^{2}}$
(c) $e^{x+1}=4$
7. You start with 81 pounds of a radioactive element. After 4 years, 1 pound remains. How many pounds remained after 3 years? Give a numerical answer.
8. Evalulate the following integrals.
(a) $\int x e^{x^{2}} d x$
(b) $\int \frac{1}{x \ln x} d x$
(c) $\int \frac{e^{x}}{1+e^{x}} d x$
9. Find the derivatives of the following functions.
(a) $f(x)=10^{x^{2}}$
(b) $f(x)=\ln \left(x \sqrt{4+x^{2}}\right)$
10. Evaluate the following integrals.
(a) $\int x^{2} e^{x} d x$
(b) $\int_{0}^{e} x^{5} \ln x d x$
(c) $\int \ln (3 x) d x$
(d) $\int \frac{4-3 x}{(x-1)^{2}} d x$
11. Find the area between the graphs of $y=x^{2}+2 x+1$ and $y=2 x+5$.
12. Find the volume when the region bounded by the graphs of $y=e^{x}, y=0, x=0$ and $x=1$ is revolved about the x-axis.
13. (25 points.) Evaluate the following integrals.
(a) $\int t \ln (t+1) d t$
(b) $\int_{2}^{5} \frac{x^{2}}{\sqrt{x-1}} d x$
14. (25 points.) Evaluate the following integrals.
(a) $\int_{0}^{4} \frac{x}{2 x+1} d x$
(b) $\int x \sec ^{2} x d x$
15. (25 points.) The region bounded by the graphs of $y=1, y=2, x=1$ and $x=2$ is revolved about the x-axis. Find the volume of the resulting solid.
16. (25 points.) Find the area under the graph of $y=\frac{-4}{x^{2}-x-6}$ between $x=-1$ and $x=2$.
17. (20 points.) Evaluate the following integrals.
(a) $\int \frac{e^{x}-1}{e^{x}+1} d x$
(b) $\int \frac{\ln x}{x^{2}} d x$
18. (20 points.) Evaluate the following integrals.
(a) $\int_{-1}^{1} x^{3} e^{-x^{2}} d x$
(b) $\int_{0}^{1}\left(\frac{x}{x+1}\right)^{2} d x$
19. (10 points.) Find a function f that satisfies

$$
f^{\prime \prime}(x)=\frac{1}{x}, x>0 ; \quad f^{\prime}(1)=1 ; \quad f(1)=1
$$

20. (10 points.) Find the area between the graphs of $y=8-x^{2}$ and $y=x^{2}$.
21. (10 points.) Alice deposits $\$ 50$ into a bank account with an annual interest rate of 10%, compounded continuously. Bob deposits $\$ 100$ into an account with an annual interest rate of 5%, compounded coninuously. Give numerical answers to the following questions, using the approximation $\ln 2 \approx 0.7$.
(a) How long does it take for Alice's money to double?
(b) At what point do the two accounts have the same balance?
22. (10 points.) Use the trapezoidal rule with 4 subintervals to estimate $\int_{0}^{1} e^{x^{3}} d x$. Do not simplify.
