Math 21B - Homework Set 1

Section 5.1:

1. f(x) =2 between x = 0 and = = 1.

a. Estimate using lower sum with two rectangles of equal width:

If we want two rectangles of equal width, we will let Az = % The

function f(z) is increasing on [0, 1], so the height of each rectangle is
given by the value of f at its left endpoint.
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. Estimate using lower sum with four rectangles of equal width:

We will let Az = i and the heighths of the rectangles are given by

the value of f at their respective left endpoints.
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c. Estimate using upper sum with two rectangles of equal width:

We will let Az = % and the heighths of the rectangles are given by
the value of f at their respective right endpoints.
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d. Estimate using upper sum with four rectangles of equal width:

We will let Az = i and the heighths of the rectangles are given by
the value of f at their respective right endpoints.
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2. f(z) = 1 between z =1 and z = 5.
a. Estimate using lower sum with two rectangles of equal width:

If we want two rectangles of equal width, we will let Az = 2. The
function f(x) is decreasing on [1,5], so the height of each rectangle
is given by the value of f at its right endpoint.
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. Estimate using lower sum with four rectangles of equal width:

We will let Az = 1 and the heighths of the rectangles are given by
the value of f at their respective right endpoints.
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. Estimate using upper sum with two rectangles of equal width:

We will let Az = 2 and the heighths of the rectangles are given by
the value of f at their respective left endpoints.

Thus we get:



d. Estimate using upper sum with four rectangles of equal width:

We will let Az = 1 and the heighths of the rectangles are given by
the value of f at their respective left endpoints.
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e 2 rectangles

We will let Az = % To get the height of the rectangles we will use:

Thus we get:
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e 4 rectangles
We will let Az = %. To get the height of the rectangles we will use:
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4. (a) I think this question had a misprint, and they meant to ask about
the height after 5 sec, but I will answer the question as stated in the
book. Since gravity points down, we have

V() = —g = —32,

and hence v(t) = —32t + C. The initial condition v(0) = 400 implies
that C' = 400 and hence v(t) = —32¢ + 400. Hence

v(5) = —32 -5+ 400 = 240 ft/sec.

(b) We use 5 subintervals of equal width At = 1. Since the velocity is
decreasing, we get a lower estimate by evaluating v(t) at the right
endpoint of each subinterval. The lower estimate is

v(1)At +v(2)At + v(3)At + v(4) At + v(B)At =
368-1+336-14+304-1+272-14240-1 = 1520ft.

5. We will let Ax = % To get the height of the rectangles we will use:
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The area A under the graph:
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So the average value of f on [0,2] is approximately 3 - 5 = 5.
Section 5.2:
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Z sin(k7) = sin(m) + sin(27) 4 sin(37) + sin(4x) + sin(57)
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4. ALL

6
a. Y 2h 1 =20421 492493494495 =1424448+416+ 32
k=1
5
b. Y 2b==204214922 4234214 25=1+4+244+8+16+32
k=0
4

c. > 2kl =204921 492423424425 =14+24+4+4+8+16+ 32

5
(b) 244+6+8+10= 3 2k
k=1

n

6. Suppose that Y ap = —5 and Y by = 6. Find the values of:
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7. If we want to take the upper sum using n equal subintervals, we will let
Ax = % Note that f is increasing on [0, 1], so to get the upper sum, we
will evaluate the function at the right endpoint of each subinterval.
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Taking the limits as n — oo gives:

lim + —

3+3/n  2+3/n+1/n* 3
2

(>';+"‘+f(n;1>'ylz+f(1)'

1
n



