Math 21B - Homework Set 1

Section 5.1:

In exercises 1-2, use finite approximations to estimate the area under the graph of the function using
(a) a lower sum with two rectangles of equal width.
(b) a lower sum with four rectangles of equal width.
(c) an upper sum with two rectangles of equal width.
(d) an upper sum with four rectangles of equal width.

1. $f(x)=x^{3}$ between $x=0$ and $x=1$.
2. $f(x)=1 / x$ between $x=1$ and $x=5$.
3. Use the midpoint rule to estimate the are under the graph of $f(x)=x^{2}$, between $x=0$ and $x=1$, using first two and then four rectangles.
4. p. 305 , problem 14 . In part (a), give the exact value for the velocity.

5 . Use a finite sum to estimate the average value of $f(x)=x^{3}$ on $[0,2]$ by partitioning the interval into four subintervals of equal length and evaluating f at the subinterval midpoints.

Section 5.2:

In exerices 1-3, write the sums without sigma notation. Then evaluate them.

1. $\sum_{k=1}^{2} \frac{6 k}{k+1}$
2. $\sum_{k=1}^{3} \frac{k-1}{k}$
3. $\sum_{k=1}^{5} \sin (k \pi)$
4. Which of the following express $1+2+4+8+16+32$ in sigma notation?
(a) $\sum_{k=1}^{6} 2^{k-1}$
(b) $\sum_{k=0}^{5} 2^{k}$
(c) $\sum_{k=-1}^{4} 2^{k+1}$
5. Express the following sums in sigma notation
(a) $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$
(b) $2+4+6+8+10$
(c) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}$
6. Suppose that $\sum_{k=1}^{n} a_{k}=-5$ and $\sum_{k=1}^{n} b_{k}=6$. Find the values of:
(a) $\sum_{k=1}^{n} 3 a_{k}$
(b) $\sum_{k=1}^{n} \frac{b_{k}}{6}$
(c) $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)$
(d) $\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)$
(e) $\sum_{k=1}^{n}\left(b_{k}-2 a_{k}\right)$
7. Find a formula for the Riemann sum to approximate the area under the graph of $f(x)=3 x+2 x^{2}$ over the interval $[0,1]$ using n equal subintervals and using the right-hand endpoint for each c_{k}. Then take a limit as $n \rightarrow \infty$ to calculate the area under the curve over $[0,1]$.
