Math 21B-B - Homework Set 4

Section 5.6:

1. Evaluate the following integrals.

(a)
$$\int_0^{\frac{\pi}{4}} \tan x \sec^2 x \, dx$$

(b)
$$\int_{-\frac{\pi}{4}}^{0} \tan x \sec^2 x \, dx$$

2. Evaluate the following integrals.

(a)
$$\int_0^{\sqrt{7}} t (t^2 + 1)^{1/3} dt$$

(b)
$$\int_{-\sqrt{7}}^{0} t (t^2 + 1)^{1/3} dt$$

3. Evaluate the following integrals.

(a)
$$\int_0^1 \frac{x^3}{\sqrt{x^4 + 9}} dx$$

(b)
$$\int_{-1}^{0} \frac{x^3}{\sqrt{x^4+9}} dx$$

4. Evaluate the following integrals.

(a)
$$\int_0^{\sqrt[3]{\pi^2}} \sqrt{\theta} \cos^2\left(\theta^{3/2}\right) d\theta$$

(b)
$$\int_{-1}^{-1/2} t^{-2} \sin^2 \left(1 + \frac{1}{t}\right) dt$$

5. Find
$$\int_2^4 \frac{dx}{x \ln x}$$
.

6. Find
$$\int_0^{\ln \sqrt{3}} \frac{e^x dx}{1 + e^{2x}}$$
.

7. Find the area between the graph of $y = x\sqrt{4-x^2}$ and the x-axis.

- 8. Page 351, problem 52.
- 9. Page 351, problem 55.
- 10. Page 351, problem 58.
- 11. Find the area between the graphs of $y = 2x x^2$ and y = -3.

- 12. Find the area between the graphs of $y=\sqrt{|x|}$ and 5y=x+6 (How many intersection points are there?).
- 13. Find the area between the graphs of $y = 3 x^2$ and y = -1.
- 14. Suppose that F(x) is an antiderivative of $f(x) = (\sin x)/x, \ x > 0$. Express

$$\int_{1}^{3} \frac{\sin(2x)}{x} \, dx$$

in terms of F.

- 15. (a) Show that if f is odd on [-a, a] then $\int_{-a}^{a} f(x) dx = 0$.
 - (b) Test the result in part (a) with $f(x) = \sin x$ and $a = \pi/2$.
- 16. A basic property of definite integrals is their invariance under translation, as expressed by the equation

$$\int_{a}^{b} f(x) dx = \int_{a-c}^{b-c} f(x+c) dx.$$
 (1)

Use a substitution to verify Equation (1).