Section 6.5

1. Stretching a spring. If a force on 90 N stretches a spring 1 m beyond its natural length, how much work does it take to stretch the spring 5 m beyond its natural length?
2. Force of attraction. When a particle of mass m is at $(x, 0)$, it is attracted toward the origin with a force whose magnitude is k / x^{2}. If the particle starts from rest at $x=b$ and is acted on by no other forces, find the work done on it by time it reaches $x=a, 0<a<b$.
3. Problem 13 on page 399 of the text.
4. Forcing electrons together. Two electrons r meters apart repel each other with a force of

$$
F=\frac{23 \times 10^{-29}}{r^{2}} \text { newtons. }
$$

(a) Suppose one electron is held fixed at the point $(1,0)$ on the x-axis (units in meters). How much work does it take to move a second electron along the x-axis from the point $(-1,0)$ to the origin?
(b) Suppose an electron is held fixed at each of the points $(-1,0)$ and $(1,0)$. How much work does it take to move a third electron along the x-axis from $(5,0)$ to $(3,0)$?

Mass Problems

1. Find the mass of the triangular region below. All lengths are in meters, and the density of the region is given by $\delta(x, y)=x$ grams $/ \mathrm{m}^{2}$.

2. Find the mass of the triangle in question 1 if the density is $\delta(x, y)=e^{(x+y)^{2}}$ grams $/ \mathrm{m}^{2}$. (Hint: divide the region into diagonal strips.)
3. A thin plate occupies the region of the plane bounded by the circle $x^{2}+y^{2}=1$. Find the total mass if the density at the point (x, y) is given by $\delta(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$. (Hint: divide the region into thin circular "rings" centered at the origin.)
4. The region bounded by the graph of $y=x^{2}$ and the x-axis, between 0 and 1 , is revolved about the x-axis. The resulting solid has density $\delta(x)=x$. Find the total mass.
